Multi-Label Consistent Convolutional Transform Learning: Application to Non-Intrusive Load Monitoring

Shikha Singh<sup>1</sup>, Jyoti Maggu<sup>1</sup>, Angshul Majumdar<sup>1 2</sup>, Emilie Chouzenoux<sup>3</sup> and Giovanni Chierchia<sup>4</sup>

<sup>1</sup>Indraprastha Institute of Information Technology, Delhi.

<sup>2</sup>TCS Research Lab, India

<sup>3</sup>Université Paris-Saclay, CentraleSupélec, Inria, CVN, Gif-sur-Yvette, France

<sup>4</sup>Université Paris East, ESIEE, Noisy-le-Grand, France

ICASSP'20

# Introduction: Non-Intrusive Load Monitoring(NILM)

- 1. NILM is a process to estimate the power consumed by the devices that are on in a given period of time, from the aggregate meter reading.
- 2. Broader goal of NILM is to feedback the appliance level energy consumption information to the users.
- 3. Most of the existing techniques use historical appliance-level data which makes the monitoring intrusive.
- 4. Recently, NILM has been framed as a multi-label classification problem to circumvent this problem.

# **Problem Statement**

Energy disaggregation via simultaneous state detection



OFF' state = 0 ON' state = 1

 $X_{washer} = 0/1 \times \text{Average power consumption of washer}$   $X_{dishwasher} = 0/1 \times \text{Average power consumption of dishwasher}$  $X_{desktop} = 0/1 \times \text{Average power consumption of desktop}$ 

# Previously Proposed Techniques

- Multi-Label k-Nearest Neighbours(ML-kNN),
- Random k-Label sets(RaKel), and
- Multi-Label Consistent Deep Dictionary Learning(MLC-DDL)

# Background: Convolutional Transform Learning(CTL)

 CTL was proposed for feature generation based on learnt convolutions, t<sub>m</sub>

$$\arg \min_{t_m, x_m^{(k)}} \frac{1}{2} \sum_{k=1}^K \sum_{m=1}^M \left\| t_m * s^{(k)} - x_m^{(k)} \right\|_2^2 + \mu \left\| T \right\|_F^2 - \lambda \log \det \left( T \right) \\ + \beta \left\| x_m^{(k)} \right\|_1 + \iota_+ \left( x_m^{(k)} \right) \quad (1)$$

where  $T = [t_1| \dots |t_m]$ ,  $s^k$  is  $k^{th}$  data vector,  $x_m^{(k)}$  is the corresponding feature vector and  $\iota_+$  denotes the indicator function of the positive orthant, equals to 0 if its input has positive entries, and  $+\infty$  otherwise.

# Convolutional Transform Learning

$$\arg\min_{T,X} F(T,X) = \frac{1}{2} \sum_{k=1}^{K} \left\| S^{(k)} T - X_k \right\|_F^2 + \beta \|X\|_1 + \iota_+(X) + \mu \|T\|_F^2 - \lambda \log \det (T)$$
(2)

#### where

$$S^{(k)}T = \left[t_1 * s^{(k)} | \dots | t_M * s^{(k)}\right]$$
$$X_k = \left[x_1^{(k)} | \dots | x_M^{(k)}\right]$$

with  $S^{(k)}$  being the Toeplitz matrix of the convolution and  $X = [X_1^\top \ \dots \ X_K^\top]^\top$ 

Proposed Algorithm: Multi-Label Consistent Convolutional Transform Learning(MLC-CTL)

$$\arg \min_{T,X,M} F(T,X,M) = \frac{1}{2} \sum_{k=1}^{K} \left\| S^{(k)} T - X_k \right\|_{F}^{2} + \beta \|X\|_{1} + \iota_{[0,+\infty[}(X) + \mu \|T\|_{F}^{2} - \lambda \log \det (T) + \eta \|Q - MX\|_{F}^{2}.$$
(3)

Q is the binary-encoded class labels and M is the mapping between labels, Q and the features, X .

## Test Phase

- The test phase consists in applying the update rule for X on the test data.
- The generated features are projected by the learnt *M* onto the label space.
- In practice the generated label map may not be binary, but it is real valued.
- We threshold it to find the active classes, using a threshold value of 0.5.

### Datasets and Metrics

Datasets: REDD and Pecan Street

F1 Score

$$F1 = \frac{2 \times TP}{2 \times TP + FN + FP}$$

 $\mathsf{TP}$  - number of true positives;  $\mathsf{FN}$  - false negatives and  $\mathsf{FP}$  - number of false positives.

Appliance-level Energy Error/ Normalized energy error (NEE)

$$NEE = \frac{\sum\limits_{t} |P_t^n - \hat{P}_t^n|}{\sum\limits_{t} P_t^n}$$

 $P_t^n$  - power consumption of the appliance *n* at any time instant *t*;  $\hat{P}_t^n$  - predicted power consumption at the same instance.

#### Table 1: Performance Evaluation on REDD

| Method  | Macro F1-Score | Micro F1-Score | Energy Error |
|---------|----------------|----------------|--------------|
| RAkEL   | 0.6579         | 0.6616         | 0.7572       |
| MLkNN   | 0.7153         | 0.7160         | 0.1101       |
| MLC-DDL | 0.6432         | 0.6435         | 0.1773       |
| MLC-CTL | 0.7505         | 0.7611         | 0.1072       |

#### Table 2: Performance Evaluation on Pecan Street

| Method  | Macro F1-Score | Micro F1-Score | Energy Error |
|---------|----------------|----------------|--------------|
| RAkEL   | 0.6520         | 0.6552         | 0.4349       |
| MLkNN   | 0.6127         | 0.6133         | 0.0259       |
| MLC-DDL | 0.6847         | 0.6848         | 0.6373       |
| MLC-CTL | 0.7240         | 0.7304         | 0.0021       |

#### Table 3: Appliance-Level Evaluation on REDD

| Device       | RAkEL    |        | MLkNN    |        | MLC-DDL  |        | MLC-CTL  |        |
|--------------|----------|--------|----------|--------|----------|--------|----------|--------|
|              | F1-Score | Error  | F1-Score | Error  | F1-Score | Error  | F1-Score | Error  |
| Lighting     | 0.6998   | 0.5690 | 0.6790   | 0.1432 | 0.7482   | 0.1818 | 0.7629   | 0.1217 |
| Kitchen      | 0.6599   | 0.8110 | 0.6667   | 0.2390 | 0.5683   | 0.1807 | 0.7027   | 0.1158 |
| Refrigerator | 0.7025   | 0.3482 | 0.7368   | 0.4256 | 0.7049   | 0.1443 | 0.7395   | 0.0062 |
| Washer Dryer | 0.5693   | 0.7860 | 0.7527   | 0.0914 | 0.5513   | 0.1768 | 0.7969   | 0.1074 |

#### Table 4: Appliance-Level Evaluation on Pecan Street

| Device          | RAkEL    |        | MLkNN    |        | MLC-DDL  |        | MLC-CTL  |        |
|-----------------|----------|--------|----------|--------|----------|--------|----------|--------|
|                 | F1-Score | Error  | F1-Score | Error  | F1-Score | Error  | F1-Score | Error  |
| Air Conditioner | 0.6155   | 0.2051 | 0.6552   | 0.0494 | 0.6756   | 0.6231 | 0.7096   | 0.0106 |
| Dishwasher      | 0.6993   | 0.8393 | 0.6564   | 0.1152 | 0.7048   | 0.6318 | 0.7382   | 0.0082 |
| Furnace         | 0.6773   | 0.5557 | 0.5864   | 0.0764 | 0.7117   | 0.6639 | 0.7540   | 0.0119 |
| Microwave       | 0.6164   | 0.3982 | 0.5510   | 0.0040 | 0.6467   | 0.6338 | 0.6942   | 0.1235 |

# Conclusion

- One does not need appliance-level data to train the model.
- This model yields the best results in term of classification accuracy and comparable results regarding energy disaggregation.
- It is a generic approach and can be used to solve any multi-label classification problem.

# Thank you!