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Introduction: Signal compression

Motivation for signal compression

To reduce latency & bandwidth for data communication
To reduce space for data storage

3000 color images (1800x2400x24bits = 32GB)

60 minutes stereo audio (320kbps = 1GB)

Image compression
Conventional algorithms: JPEG, BPG

Speech compression
Conventional algorithms: CELP,AMR

Research question
Can DNN based algorithm outperform conventional compression codecs?
Can we unify compression framework for different signal types (image and speech)?

€S  UNvERSITY OF MICHIGAN



Introduction: GAN

GAN Architecture

eal world Sample
images

Generator Sample
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Latent random variable

Generative Adversarial Network (GAN)
Generative: learn a generative model
Adversarial: train in an adversarial setting
Networks: use Deep Neural Networks
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Introduction: GAN

Train Generator
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Core idea: Adversarial training
Generator: generates indiscriminative samples
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Introduction: GAN

Train Discriminator
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Generator Sample

Latent random variable
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Core idea: Adversarial training
Generator: generates indiscriminative samples

Discriminator: distinguishes between real and fake
samples
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Inspiration: BPGAN

Update Latent Vector (Compressed Signal)
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Latent random variable
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Inspired by GAN, our algorithm updates the latent vector via back-propagation through
Discriminator and Generator

Fix discriminator and generator weights during updating latent vector
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Framework: BPGAN Compression

<4—— Forward Initialization
I:> ADMM Back-propagation
Generator G

Encoder -|-|—|-|_
Pre- Loss e
e . BN . Latent
processing Function | AbMM Back-propagation vector z
F(x,G(2)) LI | R
Huffman
Encoder
Compression
Decompression —
Post-
processing Huffman

Decoder

Generator G

Signal G(z)
Applicable to image and speech compression tasks

GAN with task specific loss functions

Improve the quality of generator output
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Framework: BPGAN Compression

G FOrward

I:> ADMM Back-propagation

Generator G

Loss
Function

h

F(x,G(2))

Search the compressed signal in latent space
z is the input to the generator G

Optimize z that minimizes loss between target signal x and G(z)
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Step 1: Signal pre-processing

G—  Forward

I:> ADMM Back-propagation

Pre-
processing

I] Initialization
Generator G

Encoder _|-|—|-|_
Loss |
) Latent

Function [ abmm Back-propagation vector z

F(x,G(2)) |_| |

Huffman
. Target Signal x Encoder
Compression
Decompression _
Post-
rocessin
: g - Huffman
Decoder

Signal G (2)
Image:
Resize the image to nxm (pre-defined) pixels

Generator G

Audio:

Use Short Time Fourier Transformation (STFT)
to get the spectrogram

Transform to mel-spectrogram and apply
normalization
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Step 2: Encode the signal

G—  Forward

I:> ADMM Back-propagation

Pre-
processing

Compression

Decompression
Post-

processing

Signal G (2)

I] Initialization
Generator G

Encoder _|-|—|-|_
Loss |
I Latent

Function [ AbMM Back-propagation vector z

F(x,G(2)) |_| |

Huffman
Encoder

Huffman

Decoder

Generator G

Encode the target signal x to the latent vector z with an encoder Neural Network
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Step 3: Optimize the latent vector

G—  Forward

I:> ADMM Back-propagation

Generator G

Loss
Function

—{Hlr

ADMM Back-propagation

F(x,G(2))

Target Signal x

gt

Latent
vector z

Update the latent vector z via the back-propagation through the generator G

Compute the gradient dF(x, G(z))/0dz for each iteration

Obtain the optimal latent vector Z that minimizes the loss function

The weights of GAN unchanged during signal compression & decompression
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Step 4: Quantization and entropy coding

Latent
ADMM Back-propagation vector z

Huffman
Encoder

G FOrward

I:> ADMM Back-propagation

Apply ADMM to quantize the latent vector Z during back propagation
Encode the quantized result with entropy coding
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Step 5: Signal decompression and reconstruction

G—  Forward

I:> ADMM Back-propagation

Post-
processing

Huffman
Decoder

Generator G

Signal G(z)
Obtain the decompressed signal G(%Z) by feeding Z to generator G

Reconstruct the signal by post-processing the signal G(%Z)
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Methodology: Training GAN

Step 1. Train the GAN (E, G, D) with unquantized (floating point) values
Adversarially train Generator (G) and discriminator (D)
Cascade an encoder by the generator to form an auto-encoder structure
Train the encoder to learn a mapping from the signal to a latent space vector
Step 2. Train a GAN with quantized input
Regularize the latent vector to quantized input
Retrain generator and discriminator with regularized latent vectors

Back-Propagation

Discriminator

X

Loss function:

nbglGn max IE[log(D (x))] + [E [log(l - (D(G(z)))] + A Eld(x,G(2))]
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Methodology: ADMM quantization

Alternating direction method of multipliers (ADMM) quantization
ADMM is a divide-and-conquer optimization algorithm
Describe the problem of quantization as:

min fdz})

subjectto Z €S

where f({Z}) is the loss function ,the set S is the quantized space

To apply ADMM for the above optimization problem, define indicator function:

0 if Z€S
+00 otherwise

9(Z) ={

Rewrite the problem with incorporate auxiliary variables R

min fdz}) +g(R)
subjectto Z =R
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Methodology: ADMM quantization

Alternating direction method of multipliers (ADMM) quantization

Through application of the augmented Lagrangian, ADMM decomposes the problem
to two subproblems

The first is minimizing the loss function of the original DNN with an additional L2
regularization term

Uk — Uk—l + Zk Rk

min f({Z})+ = ||z - Rk+Uk||

where U¥ is the dual variable updated in each iteration

The second one can be optimally and analytically solved

2
r?R}}n g(R)+— |zt — R+Uk||2

Solution: R**1 := [ (ZF*1 + U¥)
where Ilg(+)is Euclidean projection of Z¥*1 + U¥ onto the set S
Those subproblems could be solved by updating Z and R iteratively

The optimal latent vector could be obtained by retraining and quantizing the latent
vector iteratively
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Network architecture

Generator Network Topology
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TransConv+RelLU Block

Architecture for BPGAN Image Compression

inator Network
Contains 5/8 (Speech/Image) convolutional layer

Encoder Network

ISCrim

.

D

Contains 5/9 (Speech/Image) convolutional layer
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Dataset

Open Images Dataset V5 (Image compression)
Containing 9M images with 600 classes
Kodak Dataset (Image compression)

Well-known image compression dataset

TIMIT dataset (Speech compression)
Containing 6300 sentences spoken by 630 speakers from 8 major dialect regions
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8 RS
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===

Audio signal Image signal
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Result and evaluation: Comparison

Image Bitrate ImageNet ImageNet
Methods (bpp) PSNR | MS-55IM Top-1 error% | Top-5S error %
Original 24 - - 23.7 6.8
BPGAN 0.286 32.9 0.968 23.7 6.8

GAN based [1] | 0.305 28.2 0.922 26.0 7.9

JPEG 0.306 26.9 0.864 42.5 16.6

BPG 0.298 32.3 0.961 25.8 7.4

Compression tested with different datasets unused for training

Achieves state-of-the-art performance for both image/speech compression
Obtain high quality decompressed signal with extreme low bitrate
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Result and evaluation: Comparison

1c

Image Bitrate ImageNet ImageNet
Methods (bpp) PSNR | MS5-55IM Top-1 error% | Top-5S error %
Original 24 - - 23.7 6.8
BPGAN 0.286 32.9 0.968 23.7 6.8
GAN based [1] | 0.305 28.2 0.922 26.0 7.9
JPEG 0.306 26.9 0.864 42.5 16.6
BPG 0.298 32.3 0.961 25.8 7.4
Speech Bitrate Kaldi MLP LSTM
Methods (bps) PESQ | MUSHRA PER % PER % PER %
Original 256k 4.50 95.0 18.7 18.6 15.4
BPGAN 2k 3.25 64.1 20.9 20.8 18.6
CELP 4k 2.54 32.0 28.2 27.6 27.3
CELP 8k 3.39 59.4 23.0 23.6 21.2
Opus Ok 3.47 79.3 22.7 23.7 21.2
AMR 6.6k 3.36 58.9 22.6 23.6 22.3
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Compression tested with different datasets unused for training

Achieves state-of-the-art performance for both image/speech compression
Obtain high quality decompressed signal with extreme low bitrate
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Result and evaluation: Visualization

BPGAN 0.036 bpp BPG 0.039 bpp
! .,d-‘ - "

JPEG 0.156 bpp

GAN based [1] 0.036 bpp

Original
BPGAN achieves state-of-the-art performance for image compression task

Using ADMM technique to quantize the input latent vectors can achieve nearly no performance
degradation with 6-bit quantization for each element

[1] Eirikur Agustsson et al., “Generative adversarial networks for extreme learned image compression,” arXiv:1804.02958, 2018.
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Result and evaluation: Speech compression

1c

BPGAN achieves state-of-the-art performance for speech compression

Original Audio (256kbps) Compressed Audio (2kbps)

Don't ask me to carry an oily rag like that.
Don’t ask me to carry an oily rag like that “In another tune”.

Materials: ceramic modeling clay: red, white or buff.

Here, he is, quite persuasively, the very embodiment of meanness and slyness.

Sometimes, he coincided with my father's being at home.
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Result and evaluation: Quantization

1c

ADMM quantization outperforms regular uniform quantization

3.5 T T T
=+ 512 dims without ADMM
quantization bit/element —©—512 dims with ADMM
6bit n 256 dims without ADMM
31 | —©— 256 dims with ADMM
\
5| Sbit -\; |
@ \
< ' :
T o 4bit y Loss Difference .
S \ from ADMM
] \
=
1.5 3bit
1+
0.5 ' -
0.2 0.4 0.6 0.8 1 1.2 1.4
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Summary

BPGAN: New GAN-based unified signal compression framework
Applicable to both image and speech signal

Achieves variable bitrate vs. quality tradeoff for compressed signal
Outperform state-of-the-art compression algorithms

Thank youl

€S  UNvERSITY OF MICHIGAN

25



