

Clock synchronization over networks using sawtooth models

Pol del Aguila Pla, Ph.D. https://poldap.github.io, https://github.com/poldap

Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL) Mathematical Imaging Section, Center for Biomedical Imaging (CIBM), Switzerland

ICASSP 2020, May 7, 2020

https://github.com/poldap/clock_sync_and_range

Work done at the KTH Royal Institute of Technology

Clock synchronization

- Introduction to the sawtooth model
- Cramér-Rao Lower Bounds

Authors and funding

J. Jaldén

L. Pellaco

S. Dwivedi

P. Händel

SRA ICT TNG: PITA

T. Oechtering, A. Proutiere, J. Jaldén

Initially proposed in (De Angelis, Dwivedi, Händel, 2013).

Low communication overhead

- Low communication overhead
- Low power consumption

- Low communication overhead
- Low power consumption
- High measurement accuracy

- Low communication overhead
- Low power consumption
- High measurement accuracy
- Nodes can measure their own clock period

Introduction to the sawtooth model (III)

$$y_{\text{det}}[n] = \delta_{\leftrightarrow} + \delta_0 + T_{\mathcal{S}} \left(1 - \text{mod}_1 \left[T_{\text{s}} f_{\text{d}} n + \frac{\delta_{\rightarrow}}{T_{\mathcal{S}}} + \frac{\phi_{\mathcal{S}}}{2\pi} \right] \right)$$

Introduction to the sawtooth model (III)

 $Y[n] = \alpha + W[n] + \psi \operatorname{mod}_1(\beta n + \gamma + V[n])$, with W[n] and V[n] AWGN.

Introduction to the sawtooth model (III)

$Y[n] = \alpha + W[n] + \psi \mod_1(\beta n + \gamma + V[n])$, with W[n] and V[n] AWGN.

Model derivation

- Estimation theoretic analysis
- Conditions for identifiability
- Exhaustive empirical results
- DOI: 10.1109/OJSP.2020.2978762

Our model is not differentiable, so one can not define the CRLBs.

$$Y[n] = \delta_{\leftrightarrow} + \delta_0 + W[n] + T_{\mathcal{S}} \left[1 - \operatorname{mod}_1 \left(T_{\mathrm{s}} f_{\mathrm{d}} n + \frac{\delta_{\rightarrow}}{T_{\mathcal{S}}} + \frac{\phi_{\mathcal{S}}}{2\pi} + V[n] \right) \right]$$

Our model is not differentiable, so one can not define the CRLBs.

$$Y[n] = \delta_{\leftrightarrow} + \delta_0 + W[n] + T_{\mathcal{S}} \left[1 - \operatorname{mod}_{1}(T_{s}f_{d}n + \frac{\delta_{\rightarrow}}{T_{\mathcal{S}}} + \frac{\phi_{\mathcal{S}}}{2\pi} + V[n]) \right]$$

We work on an unwrapped / linearized model Z[n],

$$Z[n] = \delta_0 + \frac{\delta_{\leftrightarrow}}{2} + T_{\mathcal{S}}\left(1 - \frac{\phi_{\mathcal{S}}}{2\pi}\right) - T_{\mathcal{S}}T_{\rm s}f_{\rm d}n + U[n],$$

with U[n] a white Gaussian process such that $U[n] \sim \mathcal{N}(0, \sigma^2)$ with $\sigma^2 = \sigma_w^2 + T_S^2 \sigma_v^2$.

Our model is not differentiable, so one can not define the CRLBs.

$$Y[n] = \delta_{\leftrightarrow} + \delta_0 + W[n] + T_{\mathcal{S}} \left[1 - \operatorname{mod}_{1} (T_{\mathrm{s}} f_{\mathrm{d}} n + \frac{\delta_{\rightarrow}}{T_{\mathcal{S}}} + \frac{\phi_{\mathcal{S}}}{2\pi} + V[n]) \right]$$

We work on an unwrapped / linearized model Z[n],

$$Z[n] = \delta_0 + \frac{\delta_{\leftrightarrow}}{2} + T_{\mathcal{S}}\left(1 - \frac{\phi_{\mathcal{S}}}{2\pi}\right) - T_{\mathcal{S}}T_{\rm s}f_{\rm d}n + U[n],$$

with U[n] a white Gaussian process such that $U[n] \sim \mathcal{N}(0, \sigma^2)$ with $\sigma^2 = \sigma_w^2 + T_S^2 \sigma_v^2$.

Caveats of the approach

Not the same model (but provides a linearized intuition)

Our model is not differentiable, so one can not define the CRLBs.

$$Y[n] = \delta_{\leftrightarrow} + \delta_0 + W[n] + T_{\mathcal{S}} \left[1 - \operatorname{mod}_{1} (T_{\mathrm{s}} f_{\mathrm{d}} n + \frac{\delta_{\rightarrow}}{T_{\mathcal{S}}} + \frac{\phi_{\mathcal{S}}}{2\pi} + V[n]) \right]$$

We work on an unwrapped / linearized model Z[n],

$$Z[n] = \delta_0 + \frac{\delta_{\leftrightarrow}}{2} + T_{\mathcal{S}}\left(1 - \frac{\phi_{\mathcal{S}}}{2\pi}\right) - T_{\mathcal{S}}T_{\rm s}f_{\rm d}n + U[n],$$

with U[n] a white Gaussian process such that $U[n] \sim \mathcal{N}(0, \sigma^2)$ with $\sigma^2 = \sigma_w^2 + T_S^2 \sigma_v^2$.

Caveats of the approach

- Not the same model (but provides a linearized intuition)
- Non-identifiability of ϕ_S and δ_{\leftrightarrow} (but we can suppose we know the respective other when deriving the lower bound)

Our model is not differentiable, so one can not define the CRLBs.

$$Y[n] = \delta_{\leftrightarrow} + \delta_0 + W[n] + T_{\mathcal{S}} \left[1 - \operatorname{mod}_{1} \left(T_{\mathrm{s}} f_{\mathrm{d}} n + \frac{\delta_{\rightarrow}}{T_{\mathcal{S}}} + \frac{\phi_{\mathcal{S}}}{2\pi} + V[n] \right) \right]$$

We work on an unwrapped / linearized model Z[n],

$$Z[n] = \delta_0 + \frac{\delta_{\leftrightarrow}}{2} + T_{\mathcal{S}}\left(1 - \frac{\phi_{\mathcal{S}}}{2\pi}\right) - T_{\mathcal{S}}T_{\rm s}f_{\rm d}n + U[n],$$

with U[n] a white Gaussian process such that $U[n] \sim \mathcal{N}(0, \sigma^2)$ with $\sigma^2 = \sigma_w^2 + T_S^2 \sigma_v^2$.

Caveats of the approach

- Not the same model (but provides a linearized intuition)
- Non-identifiability of ϕ_S and δ_{\leftrightarrow} (but we can suppose we know the respective other when deriving the lower bound)

• Dependence of
$$\sigma^2$$
 on $f_d = \frac{1}{T_S} - \frac{1}{T_M}$ (but that is covered by standard results)

Estimation - Periodogram and correlation peaks (PCP)

 $Y[n] = \alpha + W[n] + \psi \operatorname{mod}_1(\beta n + \gamma + V[n])$, with $\psi < 0$ known when β is known

Estimate $|\beta|$ as the highest peak in the periodogram of the L-1-times zero-padded, zero-mean data, i.e., $|\hat{\beta}| = \arg \max_k |\text{DFT}_{NL}(\tilde{y}[n])[k]|^2/(NL)$

Estimation - Periodogram and correlation peaks (PCP)

 $Y[n] = \alpha + W[n] + \psi \operatorname{mod}_1(\beta n + \gamma + V[n])$, with $\psi < 0$ known when β is known

- Generate two single-period templates p_±[n] for ±β and circularly correlate them with the first period of the max-normalized zero-mean data
- Estimate the sign of β by the largest correlation and the phase γ from the index at which it happens, i.e., $\hat{\gamma} = \text{mod}_1(\hat{\beta}n^{\text{opt}})$

Estimation - Periodogram and correlation peaks (PCP)

 $Y[n] = \alpha + W[n] + \psi \operatorname{mod}_1(\beta n + \gamma + V[n])$, with $\psi < 0$ known when β is known

- Estimate $|\beta|$ as the highest peak in the periodogram of the L-1-times zero-padded, zero-mean data, i.e., $|\hat{\beta}| = \arg \max_k |\text{DFT}_{NL}(\tilde{y}[n])[k]|^2/(NL)$
- Generate two single-period templates p_±[n] for ±β and circularly correlate them with the first period of the max-normalized zero-mean data
- Estimate the sign of β by the largest correlation and the phase γ from the index at which it happens, i.e., $\hat{\gamma} = \text{mod}_1(\hat{\beta}n^{\text{opt}})$
- Estimate ψ through its known relation with β , and α by the closed-form minimum prediction mean squared error solution assuming $\hat{\beta}$, $\hat{\psi}$ and $\hat{\gamma}$ are correct, i.e.,

$$\hat{\alpha}_{\hat{\beta},\hat{\gamma}} = \sum_{n=0}^{N-1} y[n] - \sum_{m=0}^{N-1} \hat{\psi}_{\hat{\beta}} \operatorname{mod}_1 \left[\hat{\beta} m + \hat{\gamma} \right].$$

Estimation - Grid Search, either local (LGS), or global (GGS)

Define a grid $\mathcal{G} \times \mathcal{B}$ in $\left[-\frac{1}{2}, \frac{1}{2}\right) \times [0, 1)$, and estimate the point in the grid that minimizes the prediction mean squared error, i.e.,

$$\min_{(\beta,\gamma)\in\mathcal{G}\times\mathcal{B}}\left\{\sum_{n=0}^{N-1}\left(y[n]-\hat{\alpha}_{\beta,\gamma}-\hat{\psi}_{\beta}\operatorname{mod}_{1}[\beta n+\gamma]\right)^{2}\right\},$$

where $\hat{\alpha}_{\beta,\gamma}$ is the closed form solution as above, and $\hat{\psi}_{\beta}$ is the known amplitude given the frequency.

Estimation - Grid Search, either local (LGS), or global (GGS)

Define a grid $\mathcal{G} \times \mathcal{B}$ in $\left[-\frac{1}{2}, \frac{1}{2}\right) \times [0, 1)$, and estimate the point in the grid that minimizes the prediction mean squared error.

 $\blacktriangleright \ \mathcal{G} \times \mathcal{B}$ can be chosen global, resulting on a very irregular function landscape [dB]

Estimation - Grid Search, either local (LGS), or global (GGS)

Define a grid $\mathcal{G} \times \mathcal{B}$ in $\left[-\frac{1}{2}, \frac{1}{2}\right) \times [0, 1)$, and estimate the point in the grid that minimizes the prediction mean squared error.

- $\blacktriangleright~\mathcal{G}\times\mathcal{B}$ can be chosen global, resulting on a very irregular function landscape
- or local, around the result of PCP, where smoother behavior is expected and better estimates are likely due to a finer gridding if the PCP was close to the right solution

Empirical results

Empirical results

Empirical results

ICASSPE

using sawtooth models

Pol del Aguila Pla, Ph.D. https://poldap.github.io, https://github.com/poldap

Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL) Mathematical Imaging Section, Center for Biomedical Imaging (CIBM), Switzerland

ICASSP 2020, May 7, 2020 DOI: 10.1109/ICASSP40776.2020.9054426

https://github.com/poldap/clock_sync_and_range

Work done at the KTH Royal Institute of Technology

CLOCK STACHBOALLABOA OVER NETWORKS UNIVE SONTOOTH MOR

Remedical Imaging Group, 1795. Lanuaran, Stritowland inian of Information Reimor and Engineering. Advant of HE KTH Reyal Institute of Technology, Stockholm, Tarvins
