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Introduction to the sawtooth model (lll)
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Introduction to the sawtooth model (lll)

Y[n] = a4+ W[n] 4+ ¢ modi(Bn+~ + V[n]), with W[n] and V[n] AWGN.

Clock Synchronization Over Networks:
Identifiability of the Sawtooth Model

EvER WA

Model derivation
Estimation theoretic analysis
Conditions for identifiability

Exhaustive empirical results
DOI: 10.1109/0JSP.2020.2978762
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Cramér-Rao Lower Bounds of an unwrapped / linear model

Our model is not differentiable, so one can not define the CRLBs.
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Cramér-Rao Lower Bounds of an unwrapped / linear model

‘

Our model is not differentiable, so one can not define the CRLBs.

Y[n] = 6es + 00 + W[n] + Ts [1 _ mody( Tufan + ? + fs + V[n])]

We work on an unwrapped / linearized model Z[n],

)
Z[n] = o + % + Ts (1 - ;b—s) — TsTsfan+ U[n],
with U[n] a white Gaussian process such that U[n] ~ N (0,0?) with 02 = 62, + T202.

Caveats of the approach

» Not the same model (but provides a linearized intuition)

» Non-identifiability of ¢s and 0., (but we can suppose we know the respective
other when deriving the lower bound)

» Dependence of 02 on f3 = T%; — ﬁ (but that is covered by standard results)



Estimation - Periodogram and correlation peaks (PCP)

Y[n] = o+ W[n] + ¢ modi(Sn+ v + V[n]), with ¢ < 0 known when /3 is known

» Estimate || as the highest peak in the periodogram of the L — 1-times
zero-padded, zero-mean data, i.e., |3] = arg max, [DF T, (7[n]) [K][?/(NL)

1e-13 Power spectrum estimation |YIK]F® - Maximum at v = 0.010000 Fig. 1

—— Power spectrum
® Max. power
—— Max. location

iy

T T T T T T
00 01 0z 03 04 05




Estimation - Periodogram and correlation peaks (PCP)

Y[n] = a+ W[n] + ¢ modi(Bn+ v+ V[n]), with ¢ < 0 known when f is known

» Generate two single-period templates pi[n] for =4 and circularly correlate them
with the first period of the max-normalized zero-mean data

» Estimate the sign of 8 by the largest correlation and the phase v from the index
at which it happens, i.e., 4 = mod;(5n°P")
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Estimation - Periodogram and correlation peaks (PCP)

Y[n] = a+ W|[n] + ¢ modi(Bn + v + V[n]), with ¢» < 0 known when 3 is known

>

| 2

Estimate |3| as the highest peak in the periodogram of the L — 1-times
zero-padded, zero-mean data, i.e., | 3| = arg maxy [DFT . (7[n]) [K]|?/(NL)

Generate two single-period templates p[n] for -5 and circularly correlate them
with the first period of the max-normalized zero-mean data

Estimate the sign of 8 by the largest correlation and the phase v from the index
at which it happens, i.e., 4 = mod;(3n°P?)

Estimate v through its known relation with 38, and « by the closed-form minimum
prediction mean squared error solution assuming (3, ¥ and % are correct, i.e.,

N-1

N—-1
é\[ﬁﬁy = Zy[n] = Z TZ;B mod; [Bm —I—”}\/} .
n=0

m=0



Estimation - Grid Search, either local (LGS), or global (GGS)

Define a grid G x B in [—3, 1) x [0,1), and estimate the point in the grid that

minimizes the prediction mean squared error, i.e.,
N—1 5
min ( n| — &g~ — g modi[Bn + ) )
(ﬁ,v)eng{Zo ylnl = sy = s [ 7]

where d ., is the closed form solution as above, and 1/35 is the known amplitude given
the frequency.

n=



Estimation - Grid Search, either local (LGS), or global (GGS)

Define a grid G x B in [—%, %) % [0,1), and estimate the point in the grid that
minimizes the prediction mean squared error.

» G x B can be chosen global, resulting on a very irregular function landscape
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Estimation - Grid Search, either local (LGS), or global (GGS)

11

Define a grid G x B in [—5, 5) x [0,1), and estimate the point in the grid that
minimizes the prediction mean squared error.

» G X B can be chosen global, resulting on a very irregular function landscape

» or local, around the result of PCP, where smoother behavior is expected and

better estimates are likely due to a finer gridding if the PCP was close to the right

solution
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Empirical results

300 Monte Carlo repetitions, fy = 73 Hz, ¢s = 37 /4, 0, = 2p/c, p =2 m,
1/02 =40 dB, ¥?/02, =20 dB, Ta¢ =10 ns, Ty = 0.1 ms, and 5 = 5 us.

t e MSE(ppcp) + MSE(pras)
—10 {7 ¢ —— CRLBy(p) ---1cm




Empirical results

300 Monte Carlo repetitions, fy = 73 Hz, ¢s = 37/4, 6, =2p/c, p=2 m,
1/02 =40 dB, ¢?/02 =20dB, Tp =10 ns, T, = 0.1 ms, and dp = 5 ps.
Hz? [dB]

60 —o— MSE(f’ijpcp) MSE(%LGS)
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Empirical results

300 Monte Carlo repetitions, fy = 73 Hz, ¢s = 37/4, 6, =2p/c, p =2 m,
1/02 =40 dB, ¢?/02 =20dB, Tp =10 ns, T, = 0.1 ms, and dp = 5 ps.

rad? [dB]
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