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Hearing Aid Research Data Set
for Acoustic Environment Recognition
(HEAR-DS)

We propose a novel binaural data set

* Acoustic environment recognition

 Suitable for the needs of hearing aids

* Experimental validation by a group of
baseline deep neural networks



Current Situation

* Hearing aids provide several programs for different acoustic environments for
enhancing the quality and intelligibility of speech.

* Reliable real-time recognition of current acoustic environment is essential.

* Limited computational resources:
- Only simple, low-level features
— compared with pre-defined threshold
- to decide about the acoustic environment

* Even state-of-the-art hearing aids are limited in recognizing acoustic environments.

People can’t follow conversations in
difficult environments
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Machine Learning towards Hearing Aids

With machine learning, different noisy acoustic
environments can be recognized
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and then optimally suppressed, which in return
yields a better intelligibility and quality of speech.




Internet of Things (loT) approach

* Connect many wearers with each other

 Computational burden,
e.g. training of neural networks,

is delegated to a cloud computing system.

* Hearing Aid
- performing only the recognition (not the training) IR
— using the trained model only in forward mode
- feasible challenge even inside computational limits of a hearing aid.
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Training Data

* To train such models, a large training data set is required.

* Existing data sets

- DCASE [1], MsoS [2], LITIS [3], ChiME [4,5], MIREX [6], Freesound [8]
etc.

- define label scenes according to the location

* Hearing aids need to group similar acoustic features together as
acoustic environments
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* HEAR-DS: suitable for the needs of hearing aids ??gj



Audio Recording

binaural recordings with hearing aid on Artificial Head

with adjustable ear canals (DADEC [9])
equipped with G.R.A.S. KB 1065/1066 Pinnae

- ITC 2 mics (L/R)
- BTE 4 mics (L/R, each front/rear)
* Pre-Amp (for each mic)

- with fixed amplification factor 100
* Focusrite Scarlet 18i6 soundcard

- at 48 kHz in 32-bit PCM
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Audio Material

manual cutting slicing

i \ i ) Audio Snippet |

Raw Audio ——  Audio Cut u '?102)'Ppet
A J \_

—
/
Mixing, at multiple SNR,
with speech from CHIME
2013 [4]
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Structuring for Machine Learning
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Acoustic Environment In Vehicle
/-\ ™| rec_id_501_berlingo_Il_diesel 1
Re_coro_lln Re_coro_lm " rec_id_501 cut 03 noises_startengine
Situation Situation "
/ rec_id 501 cut 28 engine rumble
Recording Recording/ ; ..
. . rec_id 501 cut 35 engine_highway
Session Session
] Audio Snippets } ] Audio Snippets }
rec_id 502 skoda fabia ottoengine 1
Recording Recording
Session Session rec_id 503 _vw_t5 diesel_caravelle 1
] Audio Snippets } ] Audio Snippets }
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HEAR-DS Environments

Speech
Cocktail party | 667
Interfering speakers | 1481

Background Speech in background
In traffic | 530 Speech in traffic | 470
In vehicle | 584 Speech in vehicle | 511
Music | 1496 Speech in music | 1495

Quiet indoors | 525 || Speech in qu. indoors | 426
Reverberant env. | 315 Speech in reverb. env. | 692
Wind turbulence | 595 Speech in wind turb. | 439
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HEAR-DS Environments

. Cpeech
Intt_erfermg speakers:
CHIME 2018 5] il party | 667 Speech for mixing:
Interfering speakers = 1481 CHIME 2013 [4]
Background Speech in background
In traffic | 530 Speech in traffic | 470
In vehicle | 584 Speech in vehicle | 511
Music | 1496 Speech in music | 1495
Music: GTZAN [7], rs | 525 Speech in qu. indoors | 426
resampled to 48kHz .
convolved with binaural nv. | 315 || Speech in reverb. env. | 692
head-related transfer function e 595 Speech in wind turb. 439

(Kayser [10]) 12
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Validation Experiment

* Goal: Show separabillity of acoustic environments
by deep neural networks

* Challenge:
- lightweight networks
— still reach good recognition rates

* series of classification experiments with decreasing
complex deep neural networks
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Challenge

e Streamlined small
but still accurate DNNs

* optimized for low computational resources
* for real-time capable applications
* toward hearing aids
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Feature Extraction

logmel(x;, fn) = 20log, o (Mx;, fn|)
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Network Architecture: Topology

Optimizer:
torch.optim.SGD
+

nn.CrossEntropyLoss

chn 1|2 out

1) nn.Conv2d() 1) nn.Linear()
2) nn.BatchNorm2d() 2) nn.Dropout()
3) nn.ReLU() 3) nn.Linear()

4) nn.MaxPool2d()
5) nn.Dropout()
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Decreasing Complexity of Network Architectures

Network CNN; CNN» FC
net-32 32 64 100
net-28 28 56 87
net-24 24 48 75
net-20 20 40 63
net-16 16 32 50
net-12 12 24 37
net-8 8 16 25
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Live Evaluation System

e NUK mini PC
e C++

* Importing pre-trained
PyTorch-model

Rt
/

i

"
W
iy B
_'.'
- 1

k‘ "\
N -

e audio induced via ‘ |

loudspeaker over hearing aid

* Net-32 takes < 0.4s
to recognize 10s audio

More in the show and tell session ICASSP 2020, Thu 7. May 11:30 -
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Conclusions

* Provided results show

- validity of the data set

- the data set can be classified

- live audio recognition on a mini PC
* Further research needed

- HEAR-DS enables researchers to test
algorithms on different acoustic environments

— optimize DNNs for hearing aids
* Robustness
* Real-time
* limited computational capability
* Make use of HEAR-DS [11]

- We provide the Data
anything that can be made free is made free https://www.hoertech.de/en/research/open-tools-for-science.html
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