

IEEE ICASSP 2020

A Generalized Framework for Domain Adaptation of PLDA in Speaker Recognition

Qiongqiong Wang, Koji Okabe, Kong Aik Lee, and Takafumi Koshinaka

Biometrics Research Laboratories, NEC Corporation, Japan

Contents

- Introduction
- PLDA domain adaptation
 - Linear interpolation
 - Correlation alignment (CORAL)
 - CORAL+
- Proposed methods
 - Correlation-alignment-based interpolation
 - A regularization technique
 - A generalized framework
- Experiments and analysis
- Summary

Background

- Speaker recognition: to recognize a person for his/her voices
- Promising framework
 - Deep speaker embedding + PLDA (Probabilistic Linear Discriminant Analysis)

- Domain mismatch
 - Domain: recording condition, language, emotion, transmission channel...
 - Degradation in EER
 - 2~3 times [Garcia-Romero+ 2014]

Domain Adaptation for PLDA

- Different distributions in feature (speaker embedding) space
 - Training: Out-of-domain (OOD) data Eval: In-domain (InD) data

- Problem: costly to collect large labelled InD data
- Solution
 OOD model
 Small InD dataset
 Domain
 adaptation
 Adapted model
 - Adapting backend is preferred => More effective and less costly
 - PLDA: mean, between- and within-covariance $\{m, \Phi_b, \Phi_w\}$

Conventional Method 1: LIP

Linear interpolation (LIP) [Garcia-Romero+ 2014]

Problem:

- Assumption: OOD is not far from InD
- Variance of OOD can be under-estimated

Conventional Method 2: CORAL+

- Correlation alignment (CORAL) [Sun et al, 2016] [Alam et al, 2018]
 - Align OOD covariance matrices to match the InD feature vectors

$$\Phi_{\text{InD}}^{\text{pseudo}} = C_{\text{InD}}^{1/2} (C_{\text{OOD}}^{-1/2} \Phi_{\text{OOD}} C_{\text{OOD}}^{-1/2}) C_{\text{InD}}^{1/2}$$

Conventional Method 2: CORAL+

CORAL+ [Lee+ 2019]: Unsupervised

$$\Phi_{\text{InD}}^{+} = \alpha \Phi_{\text{OOD}} + (1 - \alpha) \Gamma_{\text{max}}(\Phi_{\text{InD}}^{\text{pseudo}}, \Phi_{\text{OOD}})$$

- Linear interpolation w/ OOD model
- $\Gamma_{max}(Y, Z)$: guarantee the variances and uncertainty to increase

Proposed Techniques

- Robust domain adaptation with supervised and unsupervised manner
 - Correlation-alignment-based interpolation (CIP)
 - Pseudo InD PLDA is closer to a true InD PLDA than OOD PLDA
 - Covariance regularization (reg)
 - Guarantee to propagate the uncertainty seen in OOD data to PLDA

LIP-reg

$$\Phi^{+} = \alpha \Phi_{InD} + (1 - \alpha) \Gamma_{max}(\Phi_{OOD}, \Phi_{InD})$$

CIP-reg

$$\Phi^{+} = \alpha \Phi_{InD}$$

$$+(1 - \alpha)\Gamma_{max}(\Phi_{InD}^{pseudo}, \Phi_{InD})$$

Proposed: A Generalized Framework

Three main factors

- 1) Interpolations of covariance matrices
- 2) Correlation alignment
- 3) Covariance regularization

Summarized in a general form

$$\Phi^{+} = \alpha \Phi_0 + (1 - \alpha) \Gamma_{\text{max}}(\Phi_1, \Phi_2)$$

• Φ_0 : base; Φ_1 : developer; Φ_2 : reference

Special Cases

Generalized Framework : $\Phi^+ = \alpha \Phi_0 + (1 - \alpha) \Gamma_{\text{max}}(\Phi_1, \Phi_2)$

Special case	Φ ₀	Φ_1	Φ_2
CORAL [Alam+ 2018]	Φ ^{pseudo} InD	$\Phi_{ ext{InD}}^{ ext{pseudo}}$	$\Phi_{ ext{InD}}^{ ext{pseudo}}$
CORAL+ [Lee+ 2019]	Φ _{00D}	$\Phi_{ m InD}^{ m pseudo}$	$\Phi_{ m OOD}$
Kaldi *	$\Phi_{ m OOD}$	C_{i}	$\Phi_{\rm OOD}^{\rm b} + \Phi_{\rm OOD}^{\rm w}$
LIP [Garcia-Romero+ 2014]	Φ _{InD}	$\Phi_{ m OOD}$	$\Phi_{ m OOD}$
LIP + regularization	Φ _{InD}	$\Phi_{ m OOD}$	Φ_{InD}
CIP	Φ_{InD}	$\Phi_{ ext{InD}}^{ ext{pseudo}}$	$\Phi_{ ext{InD}}^{ ext{pseudo}}$
CIP + regularization	Φ_{InD}	$\Phi_{ ext{InD}}^{ ext{pseudo}}$	Φ_{InD}
Case 8	Φ_{InD}	$\Phi_{ m InD}^{ m pseudo}$	$\Phi_{ m OOD}$
Case 9	Φ_{InD}	$\Gamma_{\max}(\Phi_{\operatorname{InD}}^{\operatorname{pseudo}},\Phi_{\operatorname{OOD}})$	Φ_{InD}

^{*} Available: https://github.com/kaldiasr/kaldi/tree/master/egs/sre16/v2

Experimental Setting

Datasets

	#Speech			
Train	X-vector	OOD	SWB, VoxCeleb 1 and 2, MIXER, augmentation	-
	PLDA	OOD	MIXER, augmentation	262,427
		InD	SRE 18 eval	13,451
Score norm			SRE 18 unlabeled	2,332
Eval			SRE 18 dev	1,741

40-d acoustic features: energy + 39-d MFCC

512-d x-vector extractor: 43-layers TDNN

Residual connections and a 2-head attentive statistics pooling

LDA: 150-d

OOD LDA for both InD and OOD PLDAs in interpolations

Gaussian PLDA: 150-d

X-vector Extraction

- Very deep 43-layer TDNN
- Residual blocks [He+'16] for avoiding gradient vanishing problem
- Additive margin (AM) softmax [Wang+'18] shows high discriminability

43 layers

Residual block

AM-softmax

$$L = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s \cdot \cos \theta_{y_i} - m}}{e^{s \cdot \cos \theta_{y_i} - m} + \sum_{j \neq y_i} e^{s \cdot \cos \theta_{y_i}}}$$

Experimental Result (1)

- □PLDA with conventional domain adaptation methods
 - > InD PLDA did not outperform OOD PLDA due to limited InD training data
 - > Both domain adaptation methods outperformed any single OOD or InD system
 - > Supervised linear interpolation would outperform unsupervised CORAL+

Experimental Result (2)

- PLDA with proposed correlation-alignment-based interpolation (CIP) and covariance regularization (reg)
 - All of the proposed methods performed better than LIP in minC_{primary}
 - \bullet CIP-reg reduced minC_{primary} by 30.5% as compared with the single systems
 - CIP-reg lowered minC_{primary} by 11.3% than that of LIP

* Interpolation weight is 0.5

Experimental Result (3)

Proposed methods with varying interpolation weights

- Regularization provided more robust performance for both LIP and CIP
- \bullet CIP and CIP-reg were better than LIP and LIP-reg in minC_{primary} with all weights
- Best minC_{primary} of the CIP reg system was 5.5% lower than LIP's best

Summary

- Proposed two techniques for robust domain adaptation of PLDA
 - Correlation-alignment-based interpolation (CIP)
 - Decreases minC_{primary} up to 30.5% as compared to OOD PLDA
 - 5.5% lower minC_{primary} than the conventional linear interpolation
 - 2) Covariance regularization
 - Ensures robustness for interpolations w.r.t. varying interpolation weights

- Proposed a generalized framework for domain adaptation of PLDA in speaker recognition
 - Works with both unsupervised and supervised methods
 - Enable to combine the two proposed techniques and several existing methods into a single formulation

Orchestrating a brighter world

