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Explicit content detection:

Given a piece of music, detect if music 
contains explicit content. Binary 
classification task

For example: strong language or 
depictions of violence, sex or substance 
abuse

Particularly sensitive for streaming 
services 
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Explicit content detection:

Still a manual task (following general 
guidelines such as parental advisory 
label)

 Slow and hard to scale to industrial-size 
catalog

Few automatic approaches and only 
based on preexisting lyrics [MMC+05] 
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[MMC + 05] Jose PG Mahedero, Álvaro MartÍnez, Pedro Cano, Markus Koppenberger, and Fabien
Gouyon. Natural language processing of lyrics. In ACM, 2005.
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Lyrics transcription:

Singing voice recognition Algorithms 
inspired from ASR 

ASR good results [Amo16] , singing voice not 
so well [Sto18] …

Lyrics transcription complicated problem 
with specific limitations

 Singing voice properties differ greatly than 
those of speech [Mes12]

 Music is (mainly) polyphonic
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[Amo16] Dario Amodei and al. Deep speech 2 : End-to-end speech recognition in english 
and mandarin. In ICML, 2016.

[Sto18] Daniel Stoller, and al.. End-to- end Lyrics Alignment for Polyphonic Music Using an 
Audio- to-Character Recognition Model. In ICASSP, 2018.

[Mes12] Anna Mesaros. Singing Voice Recognition for Music Information Retrieval. PhD 
thesis, Tampere university of technology, 2012.4



A Keyword spotting approach:

When lyrics available, dictionary-based 
methods with suitable keywords perform 
well [Fe19]

 
KeyWord Spotting (KWS) well researched in 
speech [MKM14]

 
In singing case, research sparse and still 
highly challenging
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[Fe19] Michael Fell, Elena Cabrio, Michele Corazza, and Fabien GanDon. Comparing Automated Methods 
to Detect Explicit Content in Song Lyrics. In RANLP 2019.

[MKM14] Anupam Mandal, KR Prasanna Kumar, and Pabitra Mitra. Recent developments in spoken term 
detection: a survey. In International Journal of Speech Technology, 2014.

First only audio explicit content detection 
system in the music domain!
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Our modular method:

6

Given a song, vocal are extracted using spleeter 
[Hen19], downsampled to 16 kHz and converted to 
mono

Vocal track sliced in L segment of same size T

For each segment, mel spectrogram are computed

[Hen19] Spleeter : A Fast And State-of-the Art Music Source Separation Tool With Pre-trained Models. 
Romain Hennequin and Anis Khlif and Felix Voituret and Manuel Moussalam. In Late-Breaking/Demo 
ISMIR 2019.
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Training of our system:

7

Only        and       need to be trained

Learning       can be done using training dataset     

Learning      requires to apply the preprocess 

to the training dataset

Training datasets don’t have songs in common
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Acoustic model     : 
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Audio-to-character end-to-end 
model, great results for lyrics 
alignment [SDE18]

No need of expert knowledge (e.g 
pronunciation dictionary)

Trained with DALI dataset: +4000 
songs with line-level annotations

[SDE18] Daniel Stoller, Simon Durand, and Sebastian Ewert. End-to-end Lyrics Alignment 
for Polyphonic Music Using an Audio-to-Character Recognition Model. In ICASSP, 2018.
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Acoustic model     : 

9

Architecture CRNN trained with a 
Connectionist Temporal 
Classification (CTC) loss

 Works with unsynchronized 
annotations

 Avoid first step of forced alignment 
using intermediate models 
(suboptimal model performance)
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Keyword spotting      :

1
0

Dictionary dataset: 24250 non-explicit 
tracks and 24250 explicit tracks, genre 
balanced

     automatically generated [Kim19], restricted 
to 128 words 

KWS algorithm based on CTC-based 
decoding function [Hwa15]

Keywords can be easily added to     without 
retraining the model

[Kim19]  Jayong Kim and Y Yi Mun,  A hybrid modeling approach for
an automated lyrics-rating system for adolescents.  In ECIR, 2019.

[Hwa15] Kyuyeon Hwang et al. Online Keyword  Spotting  with  a  Character-Level  
Recurrent  Neural Network. In Arxiv, 2015.1
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Explicit content detection    :

     
Explicit Dataset: 2600 non-explicit and 
2600 explicit tracks, genre balanced

Architecture: Random Forest
 Hyperparameters tuned using Random 

search and Grid seach

Number of dictionary words tuned on 
validation set

 32 best parameters 
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Transcription / KWS results:
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A positive sample for keyword 
”hate”.  

Top:  Posteriogram      inferred
by acoustic model

Bottom:  Decoding matrix

Ground truth: ”to see
we’re over and i hate when”

Transcription with beam search:
”e se where over and i hae we” 



Transcription / KWS results:
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Character error 
rate = 0.47

Transcription results:

On par with State-
Of-The-Art (SOTA)

75 % keywords 
ROC-AUC > 0.81

KWS results:

V carries information 
about presence of 

keywords



Explicit content detection results:
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Baseline:
 Lyrics informed oracles 

(Dictionary lookup). Song explicit 
if contains at least one keyword 
of 

 End-to-end naive architecture 
(CRNN)

Precision, recall, F1 on explicit 
class



Explicit content detection results:
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Our model significantly 
outperformed naive 
architecture

Yet not equivalent to the lyrics-
informed scenario, the results 
show validity of the method



Conclusion:
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Novel task of explicit musical 
content detection from audio only

Despite the task being challenging, 
our proposed modular approach 
yield promising results.

System’s decision can be easily 
explained

 Nice property given the sensitivity of 
the task



Thank you !
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