

AN EFFICIENT ALTERNATIVE TO NETWORK PRUNING THROUGH ENSEMBLE LEARNING

Martin Pöllot, Rui Zhang, and André Kaup {martin.poellot}, {rui.zhang}, {andre.kaup}@fau.de ICASSP 2020, Barcelona, Spain

Motivation

- Since the advent of AlexNet in 2010 [1], deep convolutional neural networks (CNNs) are dominating image classification leaderboards, like the Image Net LSVR Challenge[2]
- High recognition capabilities require two factors to be utilized:
 - Efficient GPU implementations allow training and inference in an acceptable amount of time (several hours/few days)
 - Deeper structures and thus more parameters yield better performance [3, 4]

Problem: Resource-critical situations, like embedded systems, lack storage and computational power to make use of aforementioned structures

[1] all references are equivalent to the numbers provided in the paper

Martin Pöllot: Network Pruning through Ensemble Learning Multimedia Communications and Signal Processing

Motivation

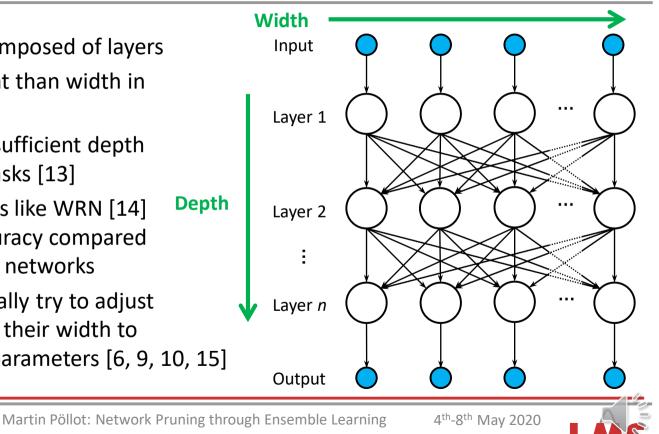
- In systems with high parameter count, a significant amount of redundancy is present [5]
- Reducing the parameter count, network pruning methods [6 10] can be applied to:
 - Reduce the number of parameters and
 - Achieve better generalization of networks with fewer parameters
- This paper presents an alternative to network pruning by combining multiple narrow networks to overcome resource critical situations and maintain classification capabilities

Martin Pöllot: Network Pruning through Ensemble Learning



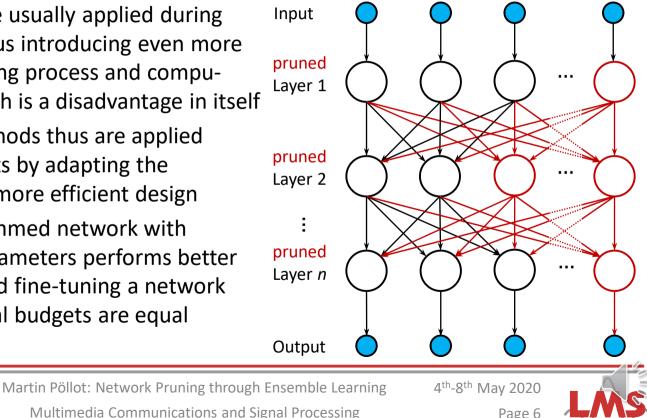
State of the Art – Basics on Neural Networks

- Neural Networks are composed of layers
- Depth is more important than width in expressive power [12]
- Narrow networks with sufficient depth can still solve difficult tasks [13]
- However, wide networks like WRN [14] can achieve similar accuracy compared to narrower but deeper networks
- Pruning methods generally try to adjust the number of layers or their width to reduce the number of parameters [6, 9, 10, 15]



State of the Art – Pruning

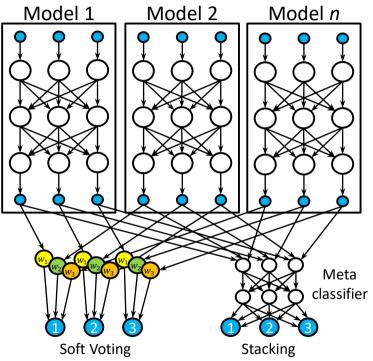
- **Pruning approaches** are usually applied during or after training [15] thus introducing even more complexity to the training process and computational resources, which is a disadvantage in itself
- Advanced pruning methods thus are applied before the training starts by adapting the network structure to a more efficient design
- Training a uniformly slimmed network with randomly initialized parameters performs better or similar to training and fine-tuning a network when the computational budgets are equal



Page 6

State of the Art – Ensemble Learning

- Ensemble learning describes the approach of using multiple models combined to an ensemble to achieve better generalization
- In contrast to pruning, ensemble learning introduces more parameters to the system
- Soft voting, where each model is trained separately, combines the softmax outputs of each model in a weighted fashion to compute the ensemble output
- Stacking is another method that introduces an extra meta-classifier with negligible size [11] that computes the most propable output of the ensemble networks



4th-8th May 2020

Martin Pöllot: Network Pruning through Ensemble Learning Multimedia Communications and Signal Processing

Downsizing the Network

• Parameter size of a 2D-convolutional layer:

 $n_p = C_{\rm in} C_{\rm out} K^2$

 C_{in} , C_{out} : input and output channel number

- K^2 : Kernel size of the filter
- Number of floating-point operations (FLOPs):

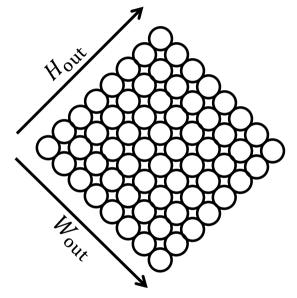
 $FLOPs = 2C_{in}C_{out}H_{out}W_{out}K^2$

 H_{out} , W_{out} : output height and width of the feature map

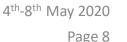
• Introducing a multiplier α :

$$\alpha^{2}n_{p} = \alpha C_{\text{in}} \alpha C_{\text{out}} K^{2}$$

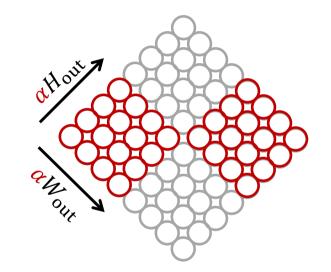
$$\alpha^{2} \text{FLOPs} = 2\alpha C_{\text{in}} \alpha C_{\text{out}} H_{\text{out}} W_{\text{out}} K^{2}$$



Martin Pöllot: Network Pruning through Ensemble Learning



- With $\alpha = 0.5$, the parameter size of a network is only 0.25 of the original and results in half the parameter size for two downsized networks
- Applying ensemble methods to these networks yields very competitive classifying results while requiring less computational power and only half the parameter size
- Downsized network serves as a base-line with comparable accuracy to the full-sized model
- Pruned network is best trained from scratch

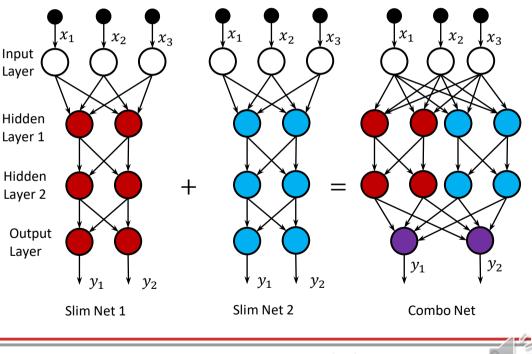


Martin Pöllot: Network Pruning through Ensemble Learning Multimedia Communications and Signal Processing

4th-8th May 2020

Our Approach: ComboNet

- ComboNet is an alternative method to soft voting and stacking, as introduced earlier
- Input layer sends data to the subnets and has no parameters, so it can be shared accross nets
- Output layer is obtained by combining the output nodes of each network in a shared layer
- Adjusted Weights W and biases B: Hidden Layer 2 $W_{\text{ComboNet}} = \frac{1}{N} [W_1; W_2; ...; W_N]$ Output Layer $B_{\text{ComboNet}} = \frac{1}{N} \sum_{i=1}^{N} B_i$



Martin Pöllot: Network Pruning through Ensemble Learning

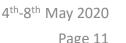
Multimedia Communications and Signal Processing

4th-8th May 2020

Page 10

Experiments

- To verify the advantages of our approach, we test three different neural network architectures with different α : VGG-16 [3], MobileNetV2 [18] and WRN28-10 [14]
- We use images from three different data sets: CIFAR-10, CIFAR-100 and Oxford-Pet
- All images are rescaled to $224 \times 224 \times 3$ and contain only 10 classes
- Data augmentation is applied using random flipping and cropping
- Each network is assigned a budget of FLOPs for training which does not need to be exhausted if their maximum performance is reached
- For stacking, the meta-classifier consists of two dense layers, soft voting uses equal weights and the proposed ComboNet consists of networks with different values for α
- We train each network for 100 epochs



Results – Accuracy Compared to Full-Sized Network

α	N	Ensemble Method	VGG-16			MobileNetV2		WRN	
			CIFAR-10	CIFAR-100	Oxford-Pet	CIFAR-10	CIFAR-100	CIFAR-10	CIFAR-100
$\sqrt{0.5}$	1		-0.06	-0.16	1.29	-5.44	-2.45		
0.5	1		-0.69	-2.18	0.18	-2.00	-5.04	-0.52	-1.01
0.5	2	Stacking	0.43	-0.01	0.82	-0.16	-1.78	0.07	0.01
0.5	2	Soft Voting	0.37	0.32	1.63	-0.45	-1.59	0.14	0.40
0.5	2	ComboNet	0.41	0.65	1.63	-0.23	-0.44	0.12	0.49
0.25	4	Stacking	-0.16					-0.34	-0.58
0.25	4	Soft Voting	-0.28					-0.21	0.16
0.25	4	ComboNet	-0.03					-0.10	0.49

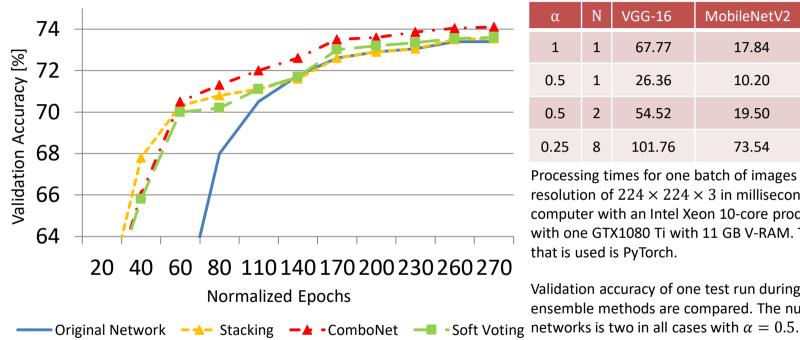
Martin Pöllot: Network Pruning through Ensemble Learning

Multimedia Communications and Signal Processing

4th-8th May 2020

Page 12

Results – Training and Duration

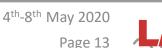


α	N	VGG-16	MobileNetV2	WRN28-10
1	1	67.77	17.84	106.26
0.5	1	26.36	10.20	35.85
0.5	2	54.52	19.50	72.90
0.25	8	101.76	73.54	145.52

Processing times for one batch of images with a resolution of $224 \times 224 \times 3$ in milliseconds on a computer with an Intel Xeon 10-core processor, equipped with one GTX1080 Ti with 11 GB V-RAM. The program that is used is PyTorch.

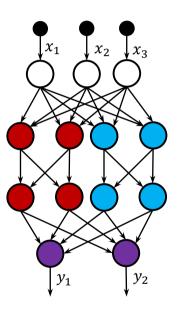
Validation accuracy of one test run during training. All ensemble methods are compared. The number of sub-

Martin Pöllot: Network Pruning through Ensemble Learning



Conclusion

- In this paper, we investigated using the ensemble of slim networks to replace full-sized networks
- We are able to show the superiority of combining two slim networks with α set to 0.5
- We not only save half the amount of parameters and FLOPs but also deliver better accuracy
- We reduce the per-epoch training time which allows more hyperparameter configurations during training
- Our approach is superior to stacking and soft voting in most cases examined



Martin Pöllot: Network Pruning through Ensemble Learning Multimedia Communications and Signal Processing 4th-8th May 2020 Page 14

