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Introduction

e Phoneme Boundary Detection or Phoneme Segmentation plays an essential first
step for a variety of speech processing applications (Automatic Speech Recognition,
Speech Diarization, etc)

e Supervision Types:
o Unsupervised -- Audio only
o Supervised -- Audio +
m Phoneme boundaries and presumed phonemes -- Forced Alignment

m Phoneme boundaries alone -- Text-Independent Phoneme Segmentation



Example




Introduction

e We suggest learning segmental representation for both phoneme boundaries and
phoneme segments to detect phoneme boundaries accurately

e \We do this by jointly optimizing a Recurrent Neural Network (RNN) with structured
loss parameters

e We evaluate our approach using TIMIT and Buckeye datasets. The proposed method
reaches state-of-the-art performance

e We additionally experiment with leveraging phoneme information as an additional
supervision and show this to be beneficial for performance and convergence speed

e Finally, we demonstrate that such phonetic supervision does not make the proposed
model language specific



Related Work

Traditionally, in the unsupervised setting, signal processing techniques were used to
find spectral changes in the singal, such changes are candidates for a phoneme
boundary location

In the supervised setting, the common approach is the Forced Alignment setup.
Models that follow this approach involve with HMM and Structured Prediction
algorithms

In the text-independent setting, most previous work consider the task of segmentation

as a binary classification problem (one label for boundaries, one for the rest)



Model

e Wedenote by x = (x1,...,x7) aspeech utterance represented by acoustic features
e Each utterance is associated with a timing sequence denoted by y = (y1,...,yx),

where k is the number of segments



Model

e Wedenote by x = (x1,...,x7) aspeech utterance represented by acoustic features
e Each utterance is associated with a timing sequence denoted by y = (y1,...,yx),
where k is the number of segments
e Consider the following prediction rule:
v, (X) = argmax w' ¢(X,y)
yey*
Where w € R? and 915 is @ mapping function from the set of input objects to a real

vector in R4
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Model

e We assume the score for a segmentation can be decomposed as a sum of segmental

Scores.

¥, (X) = argmax w' ¢(X,y) = ZI_ o' (X, ;)

yEy*

e Notice, such decomposition assumes conditional independence between boundaries

e Practically, information about the previous boundary can provide insight about the

next one:

k—1
= argmax w (¢ (%,y:) + Y &% yj.y501))
j=1

yey* i=1
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Model

e During training, we optimize the hinge loss function as follows:

((w,X,y) = max |[1— w'p(X,y)+w' dX,Y,

S’, Ey*

S

11



Model

Prediction rule:

Vo (X) = argmax w' ¢(x,y)
yey*

Loss function:

((w,X,y) = Jnax [1-w'px,5)+w' ¢, 7.

—_—




Results: Performance

Table 1. Comparison of phoneme segmentation models. Pre-
cision (P) and recall (R) are calculated with tolerance value of

20 ms
Model P R F1 R-val
- King et al.[22] 87.0 84.8 85.9 87.8
2 Franke et al.[23] 1.1 88.1 89.6 90.8

—

SEGFEAT 94.03 90.46 92.22 92.79

Franke er al.[23] | 87.8 83.3 85.5 87.17
SEGFEAT 854 89.12 87.23 88.76

Buckeye




Results: Loss Ablation

Table 2. Models performance on TIMIT using different sets
of loss function.

Loss | P R F1 ~ R-val
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Results: Loss Ablation

Table 2. Models performance on TIMIT using different sets
of loss function.

Loss | P R F1 ~ R-val
BIN | 91.1 881 89.6 908
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Results: Loss Ablation

Table 2. Models performance on TIMIT using different sets
of loss function.

Loss P R F1 R-val
BIN 91.1 88.1 89.6 90.8

SEGFEAT 904.03 9046 9222 92.79
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Results: Loss Ablation

Table 2. Models performance on TIMIT using different sets
of loss function.

Loss P R F1 R-val
BIN 1.1 88.1 89.6 90.8
SEGFEAT 904.03 9046 9222 92.79
SEGFEAT +PHN 0298 9233 9266 93.69
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Results: Loss Ablation

Table 2. Models performance on TIMIT using different sets

of loss function.

Loss P R Fl1 R-val
BIN 91.1 88.1 89.6 90.8
BIN + PHN 96.6 85.0 90.04 89.33
SEGFEAT 94.03 9046 9222 92.79
SEGFEAT +PHN 9298 9233 92.66 93.69
SEGFEAT +PHN +BIN | 92.67 93.03 92.85 93.91
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Results: Loss Ablation

Table 4. An ablation study on the effect of the PHN loss on
Hebrew language.

Model P R Fl R-val

SEGFEAT w/o PHN Loss | 83.58 79.2 81.24 83.67
SEGFEAT w PHN Loss 83.11 81.66 82.38 84.92

19



Results: Loss Ablation

Time

Predictions
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Fig. 3. Example of segmentation result on an Hebrew utter-

ance using an English trained model.



Results: Comparison to Forced Alignment

Table 3. Comparison of the proposed model against forced-
alignment algorithms.

Model P R Fl R-val
McAuliffe (unsup.) [21] 83.9 81.6 82.] 6.6
Keshet (sup.) [20] 90 82.2 85.9 79.51
SEGFEAT 94.03 90.46 92.22 92.79




Summary

e Moving from point scores to segmental scores

e Additional phoneme supervision gains (performance, convergence)

e Generalization to multilingual setup
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Future Work

e Unsupervised Phoneme Segmentation

e Systematic comparison in a multilingual setting
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Thank you!

felix.kreuk@gmail.com
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