
2020 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP)

Di�erentiable branching in deep networks for fast inference

Authors: S. Scardapane, D. Comminiello, M. Scarpiniti, E. Baccarelli, A. Uncini



Introduction

Early exits in deep networks



Early exits

An early exit is an intermediate classi�cation step inside a classical neural network
(NN) architecture.

�� ��+1

 

ℎ�−1

��
��

 

ℎ�

 

ℎ�+1
... ...
(from	the
lower	layer)

(to	the	upper
layer)

(local	exit)

Figure 1: Graphical depiction of a generic early exit in neural network architectures. In
green, we show the auxiliary predictor.

2



Why do we need early exits?

Early exits can be used for a variety of reasons:

1. They simplify optimization and gradient propagation (e.g., early Inception ar-
chitectures);

2. They can perform faster inference if an input exits early on;
3. Possibility of distributing computation on multiple tiers of computation.1

We are especially interested in points 2 and 3.

1Zhang, C., Patras, P. and Haddadi, H., 2019. Deep learning in mobile and wireless networking: A survey. IEEE
Communications Surveys & Tutorials, 21(3), pp. 2224-2287.

3



An example in a distributed system

Tier #2 
(e.g., cloud)

�1 �2

 

�

�1 �2

Tier #1 
(e.g., mobile)

C
om

m
unication channel

Figure 2: Distributed implementation of a multi-exit neural network on separate tiers of
an underlying distributed computing platform.

4



Introduction

Contribution of the paper



Contribution of the paper

With many early exits, deciding whether or not to exit at a certain point is a hard
problem.

Simple strategies (e.g., checking con�dence score) requires careful �ne-tuning
layer-by-layer and are not scalable.

Contribution:
We propose a di�erentiable formulation to train the early exit strategy together
with the main network.

5



Di�erentiable branching in deep
networks

Description of the algorithm



Schema of the algorithm

Layer	b

(�)��

Soft-conditional
output

+

1 − (�)��

(�)� ̃ 
�+1

*

*

Layer	b+1

(�)ℎ�

(�)� ̃ 
�

(�)��

Backbone
layers

Auxiliary
classifier

Soft-conditional
output

LEGEND

Figure 3: Schema of the proposed soft-conditional output. Red blocks are the main
network, blue block is the additional auxiliary classi�er. Note: the de�nition is recursive.

6



Mathematical formulation

Consider a neural network f (x), endowed with early exits f1(x), . . . , fB(x).

Each auxiliary classi�er is equipped with an additional early-stopping decision
mechanism gb(x).

We de�ne a soft-conditional output for the branch:

f̃b(x) = gb(x)fb(x) + (1− gb(x))f̃b+1(x) . (1)

The base case of the recursion is the �nal auxiliary classi�er, for which fB+1(x) =
f (x) is the standard output of the network and the con�dence is always set to one:
hB+1(x) = 1.0.

7



Training and inference

Training the network:
We train the network with a cross-entropy loss on the last soft-conditional output.

Inference phase:

I Option 1: use the soft-conditional output as an ensemble strategy;
I Option 2: replace the soft-conditional early stopping strategy with a hard bi-
nary classi�er.

8



Di�erentiable branching in deep
networks

Regularizing for energy e�ciency



Enhancing energy e�ciency

Suppose that exiting at branch b has computational complexity γb (e.g., measured
in number of elementary operations).

We penalize the average computational cost of the network as:

C =
1
N

N∑
i=1

γ̃B+1(xi) , (2)

where γ̃B+1 is recursively de�ned similar to (1) as:

γ̃b(xi) = gb(xi)γb + (1− gb(xi))γ̃b+1(xi) .

9



Experimental results

Evaluating the algorithm



Results

Table 1: Test accuracy on the three datasets for the di�erent architectures being
compared. The best result for each scenario is highlighted in bold.

Dataset
AlexNet VGG-13 ResNet-18

Baseline B-NET Prop. Baseline B-NET Prop. Baseline B-NET Prop.

CIFAR-10 73.21% 80.59% 82.54% 75.44% 82.88% 87.11% 81.61% 83.94% 85.78%

CIFAR-100 48.36% 51.18% 56.11% 47.18% 51.97% 57.31% 51.13% 54.78% 58.54%

CINIC-10 62.44% 67.99% 70.12% 63.41% 72.63% 74.02% 66.31% 70.02% 74.37%

Teerapittayanon, S., McDanel, B. and Kung, H.T., 2016. Branchynet: Fast inference via early exiting from deep
neural networks. In 2016 23rd ICPR (pp. 2464-2469). IEEE.

10



Results for the early-exit strategy

Table 2: Results of the proposed algorithm when enabling the early-exit strategy.
Speed-up is relative to the baseline version. In the last column, #b is the percentage of
inputs exiting at branch b.

Architecture Test acc. Inf. time Speed-up Exits

AlexNet 79.96% 2.74 ms 12% #1: 1.3%, #4: 82.1%, #5: 12.3%

VGG-13 86.70% 1.59 ms 44% #1: 5.1%, #6: 68.8%, #8: 20.3%, #9: 9.8%

ResNet-18 84.92% 2.18 ms 58% #1: 0.4%, #2: 22.4%, #6: 1.6%, #7: 52.2%, #8: 13.5%

11



Distribution of the exits

0.25 0.50 0.75
Early-exit confidence

(a) Branch #1

0.2 0.4 0.6
Early-exit confidence

(b) Branch #2

0.0 0.5 1.0
Early-exit confidence

(c) Branch #7

Figure 4: Early-exit con�dence for 3 branches from the trained ResNet-18 architecture on
CIFAR-10.

12



Conclusions

Conclusions and future work



Conclusions

I We proposed a new formulation for networks having multiple auxiliary clas-
si�ers that can be trained end-to-end with the main network.

I We also proposed a novel regularization term to trade-o� accuracy and com-
putational cost of inference.

I In future work we plan on further exploiting the di�erentiability of our for-
mulation, by designing additional regularization terms and loss functions.

I We also plan on investigating more complex networks and di�erent bench-
marks beyond image classi�cation.

13



Thank you for your attention! Questions?


	1
	Introduction
	Early exits in deep networks
	Contribution of the paper

	Differentiable branching in deep networks
	Description of the algorithm
	Regularizing for energy efficiency

	Experimental results
	Evaluating the algorithm

	Conclusions
	Conclusions and future work



