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Introduction

Early exits in deep networks



Early exits

An early exit is an intermediate classi�cation step inside a classical neural network
(NN) architecture.
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Figure 1: Graphical depiction of a generic early exit in neural network architectures. In
green, we show the auxiliary predictor.
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Why do we need early exits?

Early exits can be used for a variety of reasons:

1. They simplify optimization and gradient propagation (e.g., early Inception ar-
chitectures);

2. They can perform faster inference if an input exits early on;
3. Possibility of distributing computation on multiple tiers of computation.1

We are especially interested in points 2 and 3.

1Zhang, C., Patras, P. and Haddadi, H., 2019. Deep learning in mobile and wireless networking: A survey. IEEE
Communications Surveys & Tutorials, 21(3), pp. 2224-2287.
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An example in a distributed system
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Figure 2: Distributed implementation of a multi-exit neural network on separate tiers of
an underlying distributed computing platform.

4



Introduction

Contribution of the paper



Contribution of the paper

With many early exits, deciding whether or not to exit at a certain point is a hard
problem.

Simple strategies (e.g., checking con�dence score) requires careful �ne-tuning
layer-by-layer and are not scalable.

Contribution:
We propose a di�erentiable formulation to train the early exit strategy together
with the main network.

5



Di�erentiable branching in deep
networks

Description of the algorithm



Schema of the algorithm
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Figure 3: Schema of the proposed soft-conditional output. Red blocks are the main
network, blue block is the additional auxiliary classi�er. Note: the de�nition is recursive.
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Mathematical formulation

Consider a neural network f (x), endowed with early exits f1(x), . . . , fB(x).

Each auxiliary classi�er is equipped with an additional early-stopping decision
mechanism gb(x).

We de�ne a soft-conditional output for the branch:

f̃b(x) = gb(x)fb(x) + (1− gb(x))f̃b+1(x) . (1)

The base case of the recursion is the �nal auxiliary classi�er, for which fB+1(x) =
f (x) is the standard output of the network and the con�dence is always set to one:
hB+1(x) = 1.0.
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Training and inference

Training the network:
We train the network with a cross-entropy loss on the last soft-conditional output.

Inference phase:

I Option 1: use the soft-conditional output as an ensemble strategy;
I Option 2: replace the soft-conditional early stopping strategy with a hard bi-
nary classi�er.
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Di�erentiable branching in deep
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Enhancing energy e�ciency

Suppose that exiting at branch b has computational complexity γb (e.g., measured
in number of elementary operations).

We penalize the average computational cost of the network as:

C =
1
N

N∑
i=1

γ̃B+1(xi) , (2)

where γ̃B+1 is recursively de�ned similar to (1) as:

γ̃b(xi) = gb(xi)γb + (1− gb(xi))γ̃b+1(xi) .
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Experimental results
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Results

Table 1: Test accuracy on the three datasets for the di�erent architectures being
compared. The best result for each scenario is highlighted in bold.

Dataset
AlexNet VGG-13 ResNet-18

Baseline B-NET Prop. Baseline B-NET Prop. Baseline B-NET Prop.

CIFAR-10 73.21% 80.59% 82.54% 75.44% 82.88% 87.11% 81.61% 83.94% 85.78%

CIFAR-100 48.36% 51.18% 56.11% 47.18% 51.97% 57.31% 51.13% 54.78% 58.54%

CINIC-10 62.44% 67.99% 70.12% 63.41% 72.63% 74.02% 66.31% 70.02% 74.37%

Teerapittayanon, S., McDanel, B. and Kung, H.T., 2016. Branchynet: Fast inference via early exiting from deep
neural networks. In 2016 23rd ICPR (pp. 2464-2469). IEEE.
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Results for the early-exit strategy

Table 2: Results of the proposed algorithm when enabling the early-exit strategy.
Speed-up is relative to the baseline version. In the last column, #b is the percentage of
inputs exiting at branch b.

Architecture Test acc. Inf. time Speed-up Exits

AlexNet 79.96% 2.74 ms 12% #1: 1.3%, #4: 82.1%, #5: 12.3%

VGG-13 86.70% 1.59 ms 44% #1: 5.1%, #6: 68.8%, #8: 20.3%, #9: 9.8%

ResNet-18 84.92% 2.18 ms 58% #1: 0.4%, #2: 22.4%, #6: 1.6%, #7: 52.2%, #8: 13.5%
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Distribution of the exits
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Figure 4: Early-exit con�dence for 3 branches from the trained ResNet-18 architecture on
CIFAR-10.

12



Conclusions

Conclusions and future work



Conclusions

I We proposed a new formulation for networks having multiple auxiliary clas-
si�ers that can be trained end-to-end with the main network.

I We also proposed a novel regularization term to trade-o� accuracy and com-
putational cost of inference.

I In future work we plan on further exploiting the di�erentiability of our for-
mulation, by designing additional regularization terms and loss functions.

I We also plan on investigating more complex networks and di�erent bench-
marks beyond image classi�cation.
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Thank you for your attention! Questions?
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