

Joint Content-Adaptive Dictionary Learning and Sparse Selective Extrapolation for Cross-Spectral Image Reconstruction

Nils Genser, Jürgen Seiler, and André Kaup

nils.genser@fau.de

Chair of Multimedia Communications

and Signal Processing

(TEC-09 -- Restoration and Enhancement II)

Wireless Video Communication

Genser: Cross-Spectral Image Reconstruction

Use Case: Error Concealment

Wireless Video Communication \rightarrow Transmission errors

Genser: Cross-Spectral Image Reconstruction

Use Case: Multi-Color Multi-Camera Setups

 Kiesel et al., "Color Channel Reconstruction for Multi-Color Multi-View Images Using Disparity and Color Similarity-based Local Linear Regression," in Proc. Electronic Imaging - Image Sensors and Imaging Systems Conference, Jan. 2018

> FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

TECHNISCHE FAKULTÄT

Genser: Cross-Spectral Image Reconstruction

Use Case: Multi-Color Multi-Camera Setups

 Kesel et al., Color Channel Reconstruction for Multi-View Images Using Disparity and Color Similarity-based Local Linear Regression," in Proc. Electronic Imaging - Image Sensors and Imaging Systems Conference, Jan. 2018

> FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

TECHNISCHE FAKULTÄT

Genser: Cross-Spectral Image Reconstruction

Multi-Color Multi-Camera Setups

Registered and projected image

Reconstructed image

Genser: Cross-Spectral Image Reconstruction

Outline

- Motivation
- State-of-the-Art Techniques
- Novel Joint Content-Adaptive Dictionary Learning and Sparse Selective Extrapolation
- Evaluation
- Conclusion and Reference Implementation

Genser: Cross-Spectral Image Reconstruction

Exploit spatial similarity:

- Very well investigated problem in inpainting and error concealment
- Popular approach: Total Variation (TV) [2]
- Better (in terms of quality): Frequency Selective Extrapolation (FSE) [3]

Sparse model:
$$oldsymbol{g} = \sum_{k \,\in\, \mathcal{K}} \hat{c}_k \cdot oldsymbol{arphi}_k$$

with estimated coefficients \hat{c}_k

and Fourier basis functions $\boldsymbol{\varphi}_k$ in set $\boldsymbol{\mathcal{K}}$

[2] Dahl et al., "Algorithms and software for total variation image reconstruction via first-order methods," in Numerical Algorithms, Jul. 2009

[3] Genser et al., "Spectrally constrained frequency selective extrapolation for rapid image error concealment," in Proc. International Conference on Systems, Signals and Image Processing, Jun. 2018

Genser: Cross-Spectral Image Reconstruction

Exploit spectral similarity:

- Fundamental idea: Color components highly correlated
- Model for predicting missing information (using existing components)
- Color Similarity-Based Local Median Filtering (CSLMF) [1]
 - Pixel-wise processing of missing samples
 - \blacktriangleright Reconstruction \rightarrow median-filtered local neighborhood
 - Reference channel supports candidates

[1] Kiesel et al., "Color Channel Reconstruction for Multi-Color Multi-View Images Using Disparity and Color Similarity-based Local Linear Regression," in Proc. Electronic Imaging - Image Sensors and Imaging Systems Conference, Jan. 2018

Genser: Cross-Spectral Image Reconstruction

Joint Content-Adaptive Dictionary Learning and Sparse Selective Extrapolation (CASE) THE NOVEL APPROACH

Motivation

Idea:

- Image components typically highly correlated
- Undistorted channels as reference
- Block-based processing of distorted image

[4] Seiler et al., "A fast algorithm for selective signal extrapolation with arbitrary basis functions," in EURASIP Journal on Advances in Signal Processing, vol. 2011, pp. 1–10, Jan. 2011.

Genser: Cross-Spectral Image Reconstruction

Motivation

Idea:

- Image components typically highly correlated
- Undistorted channels as reference
- Block-based processing of distorted image

Goal: Derive dictionary \mathcal{D} of basis functions $\boldsymbol{\varphi}_d$

Model:
$$oldsymbol{g} = \sum\limits_{d \,\in\, \mathcal{D}} \hat{c}_d \cdot oldsymbol{arphi}_d$$

Tasks:

- Create content-adaptive dictionary from undistorted channels
- Estimate coefficients \hat{c}_d using [4]

Genser: Cross-Spectral Image Reconstruction

Chair of Multimedia Communications and Signal Processing

[4] Seiler et al., "A fast algorithm for selective signal extrapolation with arbitrary basis functions," in EURASIP Journal on Advances in Signal Processing, vol. 2011, pp. 1–10, Jan. 2011.

Best Reference Selection

Preparation: Create set \mathcal{R} of references \boldsymbol{r}_k

 $\mathcal{R} = igcup_{k \,\in\, \mathcal{K}} oldsymbol{r}_k$

Correlation analysis:

$$p_k = \frac{||(\tilde{\boldsymbol{d}} - \overline{d}) \cdot (\tilde{\boldsymbol{r}}_k - \overline{r}_k)||_1}{||\tilde{\boldsymbol{d}} - \overline{d}||_2 \cdot ||\tilde{\boldsymbol{r}}_k - \overline{r}_k||_2} \in [0, 1]$$

Best reference (highest p_k): \tilde{r}_{best}

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT Genser: Cross-Spectral Image Reconstruction

- d: Distorted signal as vector
- $ilde{d}$: Valid samples of d
- $\boldsymbol{r}_k: k$ -th reference
- $ilde{m{r}}_k$: Reference according to $ilde{m{d}}$
 - $k: \ \mbox{Fully conserved references with } k \in \mathcal{K}$

Redundancy Reduction

Delta reference list:

$$\mathcal{R}_\Delta = igcup_{k \,\in\, \mathcal{K}} oldsymbol{r}_{\Delta\,k}$$

with zero-mean difference references

$$m{r}_{\Delta\,k} = egin{cases} m{r}_k - \overline{r}_k, & k = k_{\mathsf{best}} \ m{r}_k - \overline{r}_k - m{r}_{\mathsf{best}} + \overline{r}_{\mathsf{best}}, & \mathsf{else} \end{cases}$$

Genser: Cross-Spectral Image Reconstruction

Singular Value Decomposition

Delta reference list:

 $\mathcal{R}_{\Delta} = igcup_{k \, \in \, \mathcal{K}} oldsymbol{r}_{\Delta \, k}$

with zero-mean difference references

$$m{r}_{\Delta\,k} = egin{cases} m{r}_k - \overline{r}_k, & k = k_{\mathsf{best}} \ m{r}_k - \overline{r}_k - m{r}_{\mathsf{best}} + \overline{r}_{\mathsf{best}}, & \mathsf{else} \end{cases}$$

Singular value decomposition: $r_{\Delta\,k} = oldsymbol{U}_k oldsymbol{\Sigma}_k oldsymbol{V}_k^*$

New singular value matrices:

$$\boldsymbol{\Sigma}_{k\,b} = \begin{bmatrix} s_b & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & 0 \end{bmatrix}$$

with singular values s_b

and number of diagonal entries \boldsymbol{b}

Genser: Cross-Spectral Image Reconstruction

Denoising

Delta reference list:

 $\mathcal{R}_\Delta = igcup_{k\,\in\,\mathcal{K}} oldsymbol{r}_{\Delta\,k}$

with zero-mean difference references

$$m{r}_{\Delta\,k} = egin{cases} m{r}_k - \overline{r}_k, & k = k_{ ext{best}}, \ m{r}_k - \overline{r}_k - m{r}_{ ext{best}} + \overline{r}_{ ext{best}}, & ext{else} \end{cases}$$

Singular value decomposition: $r_{\Delta\,k} = oldsymbol{U}_k oldsymbol{\Sigma}_k oldsymbol{V}_k^*$

New singular value matrices:

$$\boldsymbol{\Sigma}_{k\,b} = \begin{bmatrix} s_b & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

with singular values s_b

Omit new singular value matrices, with $s_b < 0.01$ and number of diagonal entries b

Genser: Cross-Spectral Image Reconstruction

Singular Value Composition

Dictionary:

$$\mathcal{D} = \varphi_{\mathsf{DC}} \bigcup_{k \in \mathcal{K}} \bigcup_{b \in \mathcal{B}_k} \varphi_{k \, b}$$

with DC basis function: $\varphi_{\mathsf{DC}} = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{M \times M}$

and reference based basis functions: $oldsymbol{arphi}_{k\,b} = oldsymbol{U}_k oldsymbol{\varSigma}_{k\,b} oldsymbol{V}_k^*$

Genser: Cross-Spectral Image Reconstruction

Model Generation

Model:
$$\boldsymbol{g} = \sum_{d \in \mathcal{D}} \hat{c}_d \cdot \boldsymbol{\varphi}_d$$

Estimate coefficients using [4]

Estimated prediction:

$$oldsymbol{p}_i = egin{cases} oldsymbol{d}_i \ , & i \in \mathcal{V} \ oldsymbol{g}_i \ , & ext{else} \end{cases}$$
 , $orall i \in \mathcal{A}$

- i: Pixel position
- $\mathcal{V}: \ \mbox{Set} \ \mbox{of} \ \mbox{valid} \ \mbox{indices}$
- $\mathcal{A}: \text{ Set of all indices}$

Genser: Cross-Spectral Image Reconstruction

Model Generation

Model:
$$\boldsymbol{g} = \sum_{d \in \mathcal{D}} \hat{c}_d \cdot \boldsymbol{\varphi}_d$$

Estimate coefficients using [4]

Estimated prediction:

$$oldsymbol{p}_i = egin{cases} oldsymbol{d}_i \ , & i \in \mathcal{V} \ oldsymbol{g}_i \ , & ext{else} \end{cases}$$
 , $orall i \in \mathcal{A}$

- i: Pixel position
- $\mathcal{V}: \ \mbox{Set} \ \mbox{of} \ \mbox{valid} \ \mbox{indices}$
- $\mathcal{A}: \text{ Set of all indices}$

Process all distorted blocks

Reconstructed image

Genser: Cross-Spectral Image Reconstruction

Evaluation

PERFORMANCE ANALYSIS

Objective Evaluation I

Novel CASE:

- Training: Kodak data set, block losses
- Evaluation: TECNICK/Middlebury data sets

	Spatial		Cross-spectral					
	TV	FSE	CSLMF	JRR	Novel			
	[2]	[3]	[1]	[5]	CASE			
TECNICK - Pattern block								
PSNR	28.3 dB	30.2 dB	33.2 dB	38.6 dB	39.1 dB			
SSIM	0.951	0.960	0.976	0.992	0.993			
TECNICK - Pattern line								
PSNR	23.2 dB	24.5 dB	30.3 dB	31.6 dB	32.7 dB			
SSIM	0.871	0.886	0.956	0.975	0.977			
TECNICK - Pattern block-line								
PSNR	26.6 dB	28.6 dB	32.9 dB	36.5 dB	36.9 dB			
SSIM	0.941	0.954	0.976	0.990	0.991			
TECNICK - Pattern random								
PSNR	31.8 dB	33.7 dB	34.4 dB	40.8 dB	41.9 dB			
SSIM	0.974	0.979	0.980	0.995	0.996			
Middlebury - Disparity maps								
PSNR	28.6 dB	30.2 dB	33.4 dB	33.7 dB	35.2 dB			
SSIM	0.946	0.967	0.981	0.985	0.988			

[1] Kiesel et al., "Color Channel Reconstruction for Multi-Color Multi-View Images Using Disparity and Color Similarity-based Local Linear Regression," in Proc. Electronic Imaging - Image Sensors and Imaging Systems Conference, Jan. 2018

[2] Dahl et al., "Algorithms and software for total variation image reconstruction via first-order methods," in Numerical Algorithms, Jul. 2009

[3] Genser et al., "Spectrally constrained frequency selective extrapolation for rapid image error concealment," in Proc. International Conference on Systems, Signals and Image Processing, Jun. 2018

> FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

TECHNISCHE FAKULTÄT

[5] Genser et al., "Joint Regression Modeling and Sparse Spatial Refinement for High-Quality Reconstruction of Distorted Color Images," in Proc. IEEE International Conference on Image Processing (ICIP), Sep. 2019

Genser: Cross-Spectral Image Reconstruction

Objective Evaluation I

Novel CASE:

- Training: Kodak data set, block losses
- Evaluation: TECNICK/Middlebury data sets
- Outperforms state-of-the-art :
 - error concealment algorithms
 - color reconstruction approaches
- Suited for all kind of error patterns

[1] Kiesel et al., "Color Channel Reconstruction for Multi-Color Multi-View Images Using Disparity and Color Similarity-based Local Linear Regression," in Proc. Electronic Imaging - Image Sensors and Imaging Systems Conference, Jan. 2018

[2] Dahl et al., "Algorithms and software for total variation image reconstruction via first-order methods," in Numerical Algorithms, Jul. 2009

[3] Genser et al., "Spectrally constrained frequency selective extrapolation for rapid image error concealment," in Proc. International Conference on Systems, Signals and Image Processing, Jun. 2018

[5] Genser et al., "Joint Regression Modeling and Sparse Spatial Refinement for High-Quality Reconstruction of Distorted Color Images," in Proc. IEEE International Conference on Image Processing (ICIP), Sep. 2019

	Spatial		Cross-spectral					
	TV	FSE	CSLMF	JRR	Novel			
	[2]	[3]	[1]	[5]	CASE			
TECNICK - Pattern block								
PSNR	28.3 dB	30.2 dB	33.2 dB	38.6 dB	39.1 dB			
SSIM	0.951	0.960	0.976	0.992	0.993			
TECNICK - Pattern line								
PSNR	23.2 dB	24.5 dB	30.3 dB	31.6 dB	32.7 dB			
SSIM	0.871	0.886	0.956	0.975	0.977			
TECNICK - Pattern block-line								
PSNR	26.6 dB	28.6 dB	32.9 dB	36.5 dB	36.9 dB			
SSIM	0.941	0.954	0.976	0.990	0.991			
TECNICK - Pattern random								
PSNR	31.8 dB	33.7 dB	34.4 dB	40.8 dB	41.9 dB			
SSIM	0.974	0.979	0.980	0.995	0.996			
Middlebury - Disparity maps								
PSNR	28.6 dB	30.2 dB	33.4 dB	33.7 dB	35.2 dB			
SSIM	0.946	0.967	0.981	0.985	0.988			

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Genser: Cross-Spectral Image Reconstruction

Page

Objective Evaluation II

Computation time:

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

TECHNISCHE FAKULTÄT

- Implementation: MATLAB
- Averaged over 100 executions
- Less complex than state of the art

[1] Kiesel et al., "Color Channel Reconstruction for Multi-Color Multi-View Images Using Disparity and Color Similarity-based Local Linear Regression," in Proc. Electronic Imaging - Image Sensors and Imaging Systems Conference, Jan. 2018

[2] Dahl et al., "Algorithms and software for total variation image reconstruction via first-order methods," in Numerical Algorithms, Jul. 2009

[3] Genser et al., "Spectrally constrained frequency selective extrapolation for rapid image error concealment," in Proc. International Conference on Systems, Signals and Image Processing, Jun. 2018

[5] Genser et al., "Joint Regression Modeling and Sparse Spatial Refinement for High-Quality Reconstruction of Distorted Color Images," in Proc. IEEE International Conference on Image Processing (ICIP), Sep. 2019

Genser: Cross-Spectral Image Reconstruction

Objective Evaluation III

Robustness:

- Evaluation: Multi-spectral CAVE data set (400 to 700 nm)
- Image at 550 nm distorted
- Combination of block, random, and line losses
- References: Spectrally varying, adjacent first
- Multiple references beneficial
- Little influence for bad references

Number of reference channels

Genser: Cross-Spectral Image Reconstruction

Visual Evaluation I

Distorted

Genser: Cross-Spectral Image Reconstruction

Visual Evaluation II

Ground truth

State-of-the-art TV [2]

Genser: Cross-Spectral Image Reconstruction

Visual Evaluation III

Ground truth

State-of-the-art CSLMF [1]

Genser: Cross-Spectral Image Reconstruction

Visual Evaluation IV

Ground truth

Proposed CASE

Genser: Cross-Spectral Image Reconstruction

AND REFERENCE IMPLEMENTATION

Distorted color/multispectral images:
 E.g., in video coding or multi-camera setups

Genser: Cross-Spectral Image Reconstruction

- Distorted color/multispectral images:
 E.g., in video coding or multi-camera setups
- State-of-the-art techniques
 - Either cross-component or spatial reconstruction
 - > Hybrid models for only one reference component
 - Insufficient quality

Genser: Cross-Spectral Image Reconstruction

- Distorted color/multispectral images:
 E.g., in video coding or multi-camera setups
- State-of-the-art techniques
 - Either cross-component or spatial reconstruction
 - > Hybrid models for only one reference component
 - Insufficient quality
- Novel CASE algorithm
 - Spatial and cross-color reconstruction
 - Arbitrary number of reference channels possible
 - Outstanding visual and objective quality

Page 37

Genser: Cross-Spectral Image Reconstruction

Chair of Multimedia Communications and Signal Processing

ECB

CASE framework :

- Color component reconstruction using multiple reference channels
- https://gitlab.lms.tf.fau.de/lms/case

Genser: Cross-Spectral Image Reconstruction

