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Motivation

- Deep neural networks (DNN) are one of the state-of-the-art methods for a
variety of prediction and supervised learning tasks.

- Because DNN models can be large, inference becomes computationally
expensive. Embedded and mobile devices that are resource constrained may
not be able to effectively use DNNs trained for powerful high-end GPU
environment.
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Related work

- Weights pruning [1,2,3]
- Speedup requires special backend library

- Hardware-agnostic filter pruning [4,5,6]
- The number of parameters or FLOPs do not correlate strongly with latency

- Hardware-aware filter pruning [8,9,10]
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[7] van Werkhoven, Ben. "Kernel Tuner: A search-optimizing GPU code auto-tuner." Future Generation Computer Systems 90 (2019)

[8] Yang, Tien-Ju, et al. "Netadapt: Platform-aware neural network adaptation for mobile applications." ECCV (2018).

[9]1 He, Yihui, et al. "Amc: Automl for model compression and acceleration on mobile devices." ECCV (2018)

[10] Yang, Haichuan, Yuhao Zhu, and Ji Liu. "Ecc: Platform-independent energy-constrained deep neural network compression via a bilinear regression model." CVPR (2019).



Filter Pruning Limitations

- The range of attainable latency reduction is limited by the depth of the model.
Filter pruning, in general, is able to achieve slimmer models

- Resource consumption (e.g latency) modeling can take days to generate data

measurements per hardware and architecture specially on low-end hardware
platforms.
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Layer-wise Accuracy Approximation

- Proxy classifiers after each layer »
Accuracy up to this layer.
- How to calculate layer-wise
accuracy efficiently without the | e T

Proxy Proxy
need fOI' re-tl‘alnlng? classifier classifier
- We adopt weights imprinting

- Motivated by few-shot learning work
[11, 12]

Feature maps

[11] Qi, Hang, Matthew Brown, and David G. Lowe. "Low-shot learning with imprinted weights." CVPR 2018.
[12] M. Siam, B.O., Jagersand, M.: “Amp: Adaptive masked proxies for few-shot segmentation.” ICCV 2019.




Weights Imprinting

- Classification weights for the ith layer W, 1 N

- Weight for each class ¢ can be represented as Wi[z’ C] - E Z I[CJ‘==
the average of embeddings for all samples
belonging to that class, each sample with
embedding EJ

- The prediction for each sample jin the validation R
.p i) g; = argmax W;[:,c|TE;,
set is calculated by: ce{1,...,C'}
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[11] Qi, Hang, Matthew Brown, and David G. Lowe. "Low-shot learning with imprinted weights." CVPR 2018.
[12] M. Siam, B.O., Jagersand, M.: “Amp: Adaptive masked proxies for few-shot segmentation.” ICCV 2019.
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Experiments

- Datasets
CIFAR-100
ImageNet

- Architecture

VGG
ResNet-50



VGG - CIFAR100
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VGG - CIFAR100

- Drop in accuracy followed by an
increasing trend from conv10 to convi4.

- Our method improves on the previously e e S Ml | P ) Lateney reducion ()
. . Randon.l layer pruning 68.95 - - 40.00
reported accuracy [Masking in 22] by Laye’g‘ﬁ;ﬁ;ﬁ;‘g”‘[ﬁ ]<ours> e 2 = gus
118% while achieving a 43.70% latency e | | 2| 48 iy
. . ECC [15] 72.71 16 7.86 25.17
reduction over VGG19 vs. the previous
) Table 1: Pruning results on CIFAR100 showing best and sec-
state-of-the-art at 26.75% (Masking). ond best in each criterion. Latency reduction is measured on

1080Ti GPU 1000 runs.
- In terms of accuracy, we outperform the RS SR

average of 10 randomly layer-pruned
models of similar latency reduction as ours
(= 40%) by 5.43%



ResNet50 - ImageNet

- On bar with the state-of-the art filter

Method Accuracy | Nlayers | Params (1€%) | Latency reduction (%)
. N ResNet-50 baselin 76.14 53 2515 0
pruning method in accuracy. T e e LR R %4 06
Layer-wise proxy -_1 block + 3 layers (ours) 75.0 4 24.1 24.02
- Minimal model that can be achieved by e o | = | TR e
. . ECC [E] 74.88 53 235 1.93
filter pruning methods such as ECC FOC miingl mote) tes | » | e 156

achieves 14.45% latency reduction.

Table 2: Pruning results on ImageNet showing best and sec-

ond best in each criterion. Latency reduction is measured on
1080Ti GPU across 1000 runs with batch size=1.

* Minimal model is the one with the same depth as the dense model
but with one filter per each prunable layer.



ResNet50 - ImageNet

- We further compare imprinting layer
pruning on similar latency budget
with smaller ResNet variants such as
ResNet34 and ResNet41

- We outperform ResNet41 by 0.9%
and ResNet34 by 1.44%.

Method Accuracy | Nlayers | Params (1e%) | Latency reduction (%)
ResNet-50 baseline 76.14 53 25.5 0
Layer-wise proxy - 4 blocks (ours) 76.40 41 24.8 25
ResNet-41 75.50 44 25.3 25
Layer-wise proxy - 6 blocks (ours) 74.74 35 23.4 39
ResNet-34 [19] 73.30 37 217 39




Conclusion

-  We proposed a one-shot layer pruning method that incorporates a layer-wise
accuracy approximation through imprinting.

- Our method achieves higher latency reduction compared to filter pruning
methods and manually crafted variants.

- Our method is not limited by model architecture design.
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https://github.com/selkerdawy/one-shot-layer-pruning

