RTip: A Fully Automated Root Tip Tracker for Measuring Plant Growth With Intermittent Perturbations

ICIP 2020 - 1067: (ARS-02.14) Biomedical and Biological Image Analysis

Presented by: Deniz Kavzak Ufuktepe Deniz Kavzak Ufuktepe¹, Kannappan Palaniappan¹, Melissa Elmali², Tobias I. Baskin²

> 1 Electrical Engineering and Computer Science Dept., University of Missouri, Columbia, MO, USA 2 Biology Department, University of Massachusetts, Amherst, MA, USA

Background

- Observe growth kinematics for plant physiology studies
- Root tip tracking for analysis of plant phenotyping
 - Growth rate
- Measure effects of different manipulations on root perturbations
 - e.g. cut plant shoot, apply substance

Root Tip Tracking

• High resolution root tip microscopy image sequence (2448x2048)

- Tracking the root tip for velocity estimation
 - Manually too error prone, even when generating ground truth

- The sequence is perturbed for an unknown number of frames
 - Cutting the root shoot analyze effects
- Many collected videos
 - Manually too long, too many videos to be analyzed

Root Tip Tracking

- Subpixel accuracy in high-resolution
 - Smooth transition between (bounding box) BBoxes
 - No jitter, no size changes in BBoxes

- Time and duration of perturbation is unknown
 - Automatic identification of root + root tip
 - Root tip might be gone, or blurry
 - Automatic recovery
- Current well-performing trackers:
 - fail to track accurately
 - needs manual re-initialization

Rtip Results

RTip Algorithm

Fully Automated root tip tracker

- Automatic Init and Reinit (AIR) with BBox improvement
 - Automatic localization of root tip
 - Identify blurry images with root tip
 - Improved BBox best fit in neighborhood
- Automatic Invalid Frame (AIF) Detection-Recovery
 - Automatic identification:
 - Invalid frames no root
 - Valid frames root
- Robust (Kanade–Lucas–Tomasi feature tracker) KLT (rKLT) Tracking
- with (M-estimator sample consensus) MSAC Outlier Filtering
 - Smooth BBox transition

Kanade–Lucas–Tomasi feature tracker (KLT)

- Shi-Tomasi corner detector -> feature points
 - Eigen values of structure tensor for each pixel p: λ_1 , λ_2 , threshold λ
 - Pixel p is corner <--> $min(\lambda_1\lambda_2) > \lambda$
- Track feature points \boldsymbol{x} in time $t \rightarrow t + \tau$:
 - $I(x, y, t + \tau) = I(x \xi, y \eta, t)$
- Model displacement $d = (\xi, \eta)$ of the point x = (x, y) between t and $t + \tau$
 - Motion vectors -> Gradient of Hessian matrix at x
- Minimize the error of noise η
- Carlo Tomasi and T Kanade, "Detection and Tracking of point features," Tech. Rep., Tech. Rep. CMU-CS-91- 132, Carnegie Mellon University, 1991.
- Jianbo Shi and Tomasi, "Good features to track," CVPR, Seattle, WA, USA, 1994, pp. 593-600.

Automatic Init and Reinit (AIR) with bbox improvement

- Template + Normalized Cross Correlation (NCC) → initial candidate BBox
- Neighbor BBoxes of initial candidate
 - KLT* to track points, count # of inliers (Forward-Backward error)
 - Chose the BBox with max inliers (re)start rKLT tracker
- Blurry, corrupted, perturbed frame with root
 - maximum # of inliers < threshold (i.e. 1500 points)
 - Frame is not good to restart tracker
 - Run AIR for next frame

* Carlo Tomasi and T Kanade Detection, "Tracking of point features," Tech. Rep., Tech. Rep. CMU-CS-91- 132, Carnegie Mellon University, 1991.

Automatic Init and Reinit (AIR) with bbox improvement

Simplified Radon Transform (RT)

- RT operator calculates projections of an object along specified angles by line integrals
- Coordinates are rotated by each $\theta \in [0, 180]$
- A set of parallel lines are integrated that are perpendicular to the rotated axis

$$R_{\theta}(x') = \int_{-\infty}^{\infty} f(x'\cos\theta - y'\sin\theta, x'\sin\theta + y'\cos\theta)dy'$$

where $\begin{bmatrix} x'\\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$

• Simplified RT: $\theta = 0$ and $\theta = 90$ for simpler images

10

* Picture from MATLAB web pagehttps://www.mathworks.com/help/images/radon-transform.html .

Simple root + root tip identification using radon transform

RT 0

RT 90

2.5 ×10⁵

017

11

Automatic Invalid Frame (AIF) Detection-Recovery

- Apply Simplified Radon Transform (RT) on 0 and 90 degrees
- Find Chebyshev distance between RTs of each degree

•
$$D_{i,\theta}^{RT}(\mathbf{RT}_i, \mathbf{RT}_{i-1}) = \max_{p} |RT_{i,p} - RT_{i-1,p}|$$
 and $D_{s,\theta}^{RT}(\mathbf{RT}_i, \mathbf{RT}_s) = \max_{p} |RT_{i,p} - RT_{s,p}|$

• p: projection vector axis, i: current frame, s: safe frame

Fig. 1. $D_{i,0}^{RT}$ and $D_{s,0}^{RT}$ distance values for the whole sequence

Fig. 2. $D_{i,90}^{RT}$ and $D_{s,90}^{RT}$ distance values for the whole sequence

Robust KLT (rKLT) Tracking with MSAC Outlier Filtering

- Track Shi-Tomasi feature points from the Bbox with KLT
- KLT tracks feature points rKLT: Minimize Forward-Backward Error (FBE*)

- Estimate Similarity transformation between feature points and tracked points
 - Use Forward-Backward Error again to eliminate outliers
 - M-estimator sample consensus (MSAC**) outlier elimination in trans. Estimation
- Transform the Bbox to the next frame by the transformation

(*) Z. Kalal, K. Mikolajczyk and J. Matas, "Forward-Backward Error: Automatic Detection of Tracking Failures," ICPR, Istanbul, 2010, pp. 2756-2759 (**) Torr, Philip HS, and Andrew Zisserman. "MLESAC: A new robust estimator with application to estimating image geometry." Computer vision and image understanding 78.1 (2000): 138-156

RANSAC vs. M-estimator sample consensus (MSAC)

• RANSAC is effective in finding the minimum cost for the function

$$c = \sum_{i} \rho(e_i^2), \text{ where } \rho(i) \text{ is } \rho(e^2) = \begin{cases} 0 & e^2 < T^2 \\ constant & e^2 \ge T^2 \end{cases}$$

and T is the threshold.

- inliers don't have a score and outliers score a constant penalty
- higher T causes more solutions to have same cost, leads poor estimation
- MSAC* minimizes same cost func. with robust error term ρ () is

•
$$\rho(e^2) = \begin{cases} e^2 & e^2 < T^2 \\ constant & e^2 \ge T^2 \end{cases}$$

- outliers are still given a fixed penalty, but
- inliers are scored on how well they fit the data.

Robust KLT (rKLT) Tracking with MSAC Outlier Filtering

Experiments

- Experimented on 2 datasets
 - 2048x2448
 - 80 frames each 160 in total
 - Sampling rate is 30 seconds per frame total elapsed time is \approx 40 min

• 6 other trackers are also run on the same datasets for comparison

Trackers

- Discriminative Correlation Filter Tracker (CSRT) multiple feature channels
 - Lukezic, Alan, et al. "Discriminative correlation filter with channel and spatial reliability." CVPR 2017.
- SiamDW deep learning, given default weights are used
 - Zhang, Zhipeng, and Houwen Peng. "Deeper and wider siamese networks for real-time visual tracking." CVPR 2019.
- Multiple Instance Learning (MIL) discriminative classifier separate background-foreground
 - Babenko, Boris, et al. "Visual tracking with online multiple instance learning." CVPR 2009.
- MedianFlow Forward-Backward error to detect tracking failures
 - Kalal, Zdenek, et al. "Forward-backward error: Automatic detection of tracking failures." ICPR 2010.
- Kernelized Correlation Filters (KCF) color features tracking by detection
 - Danelljan, Martin, et al. "Adaptive color attributes for real-time visual tracking." CVPR 2014.
- Tracking, learning and detection (TLD) learn detection errors
 - Kalal, Zdenek, et al. "Tracking-learning-detection." IEEE transactions on pattern analysis and machine intelligence 34.7 (2011): 1409-1422.

Ground Truth Generation

- Start from initial bounding box of first frame
- Manually locate BBox in each 5th frame
- Generate Bbox in between by interpolating centroids of i and i+4

Results

					-
Tracker	V_{err}	RMSE	SSIM	Adapt	•
GT	NA	6.23 ± 1.68	$0.81 {\pm} 0.05$	NA	
RTip	0.49±0.34	6.37±1.58	0.80±0.05	\checkmark	
MIL	$0.56 {\pm} 0.61$	6.41 ± 1.90	$0.80 {\pm} 0.06$	×	
MedFl	$0.57 {\pm} 0.48$	6.35±1.88	0.80±0.05	×] .
KCF	0.97 ± 1.17	8.55 ± 1.41	$0.69 {\pm} 0.05$	×	
Siam	$1.92{\pm}1.72$	8.94±1.61	$0.68 {\pm} 0.05$	×	
CSRT	$2.64{\pm}2.66$	$8.04{\pm}1.87$	0.71 ± 0.07	×	
TLD	13.01 ± 30.09	10.23 ± 1.78	$0.68 {\pm} 0.05$	×	

- V_{err} • RTip 0.49 ± 0.34
- RMSE
 - GT 6.23±1.68
 - RTip 6.37±1.58
 - MedianFlow 6.35±1.88
- SSIM
 - GT 0.81 ± 0.05
 - RTip 0.80 ± 0.05
 - MedianFlow 0.80 ± 0.05
- RTip: Automatic reinit Adaptive
- V_{err} = Difference between ground truth and tracker velocity estimation
- *RMSE* = Root mean squared error between the Bboxes and initial template
- *SSIM* = Structural Similarity Index between Bboxes and initial template
- *Adapt* = Adaptation to perturbed frames
- GT = Ground Truth (with linear interpolation)

Conclusion

- Simplified Radon Transform can be used to identify root and root tip
- KLT with FBE + similarity transformation estimation with FBE + MSAC eliminate outliers robust BBox transition
- NCC with KLT+FBE to find best BBox can be used to identify root tip good recovery

Future Work

- Machine learning to select distance threshold value intelligently that will work with all sequences without manual tuning
- Using contour information for tracking
- Use a deep learning detector for faster and accurate recovery
 - YOLO retrain with variety of root species
- Extend RTip to detect medial line of the root
 - DeepFlux deep learning algorithm finds skeleton of objects

Thank you for listening..

Questions?

