ST-GCN-PAM

Pairwise Adjacency Matrix on Spatial-Temporal Graph Convolutional Network for Two People Action Recognition

The 27th IEEE International Conference on Image Processing (ICIP 2020)

Chao-Lung Yang, Aji Setyoko, Hendrik Tampubolon, Kai-Lung Hua National Taiwan University of Science and Technology

CONCLUSSION

Action recognition

Provides a very usefull information which difficult to extract:

• personality and psychological state.

Wide range of applications:

- intelligent video surveillance,
- environmental home monitoring,
- video storage and retrieval,
- intelligent human-machine interfaces,
- and identity recognition.

One important type of real-world information extraction.

e.g. daily action

Typing

Reading

Take off bag

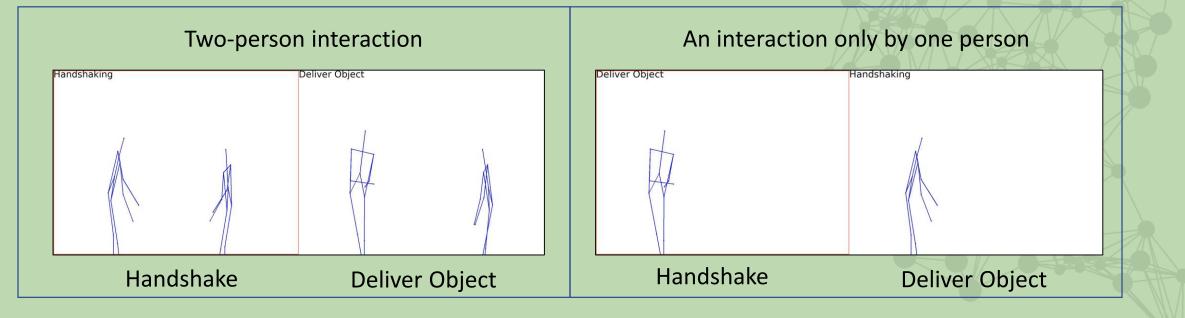
e.g. mutual action(two person Interaction)

Shaking hands

Hugging

Two-people interaction recognition (TPIR)

- Open research.
- Model developed for TPIR can serve as a primitive model toward more complex action recognition (e.g., Multiple Activity Recognition, Collective Activity Recognition, etc).
- The state-of-the-art of TPIR is general action recognition.
 - Solve TPIR problem by refering only from each people in the videos.
 - We notice that it might be less performed since we have to extract the interaction feature.



ST-GCN for Skeleton-Based Action Recognition

- ST-GCN is the state-of-the-art of action recognition which have speciality in:
 - Light.
 - Real-time performance.
 - High performance on large scale dataset.
- ST-GCN
 - Achieve outstanding performance on general action recognition (single action recognition, human-object interaction recognition, etc.)
 - However, there are no graph connection that represent an interaction (Might be less superior to TPIR Case).
 - ST-GCN does not extract the interaction feature.
 - In fact, they detect the mutual action by only averaging each actor in the action input.
- Possible solution
 - Providing a new graph connection between actors allow the model to extract interaction feature
 - Expected to be enhancing the performance of ST-GCN on the TPIR problem

Yan, Sijie, Yuanjun Xiong, and Dahua Lin. "Spatial temporal graph convolutional networks for skeleton-based action recognition." In Thirty-second AAAI conference on artificial intelligence. 4 2018.

Research Objective

- Build two people interaction recognition by:
 - Enhance ST-GCN performance on recognizing TPIR problem.
- Contribution:
 - Focused on developing a graph-based deep learning model to solve the TPIR which involved two-person interaction.
 - Propose PAM that is able to capture the pairwise relationship of two graphs on TPIR in which the performance of the ST-GCN can be enhanced.
 - The proposed model outperforms the state-of-the-art methods by validating on NTU RGB+D 60 and NTU RGB+D 120 datasets.

CONCLUSSION

Dataset

- Large Scale dataset. Provide skeleton in 3D coordinate. 60 action and 11 twopeople interaction.
- And extension of NTU-RGB-D 60, with 120 action and 27 action for twopeople interaction.
- Youtube Video.
- 6 selected action used.

NTU-RGB-D 60[4]

NTU-RGB-D 120[5]

Kinetics-Dataset[24]

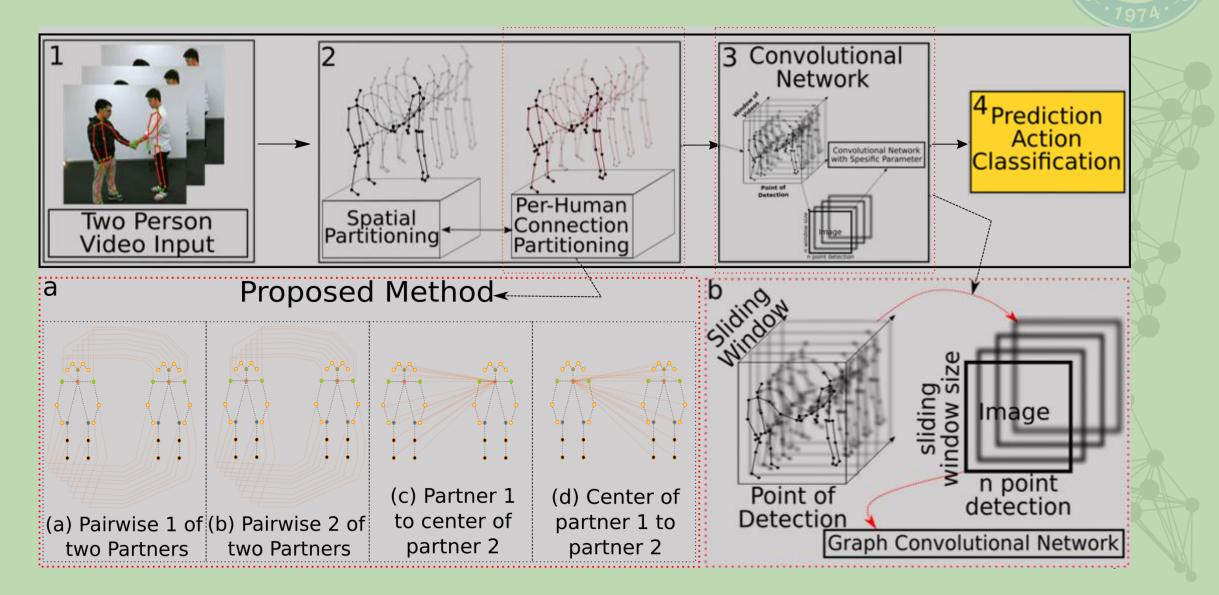
6

[4] A. Shahroudy, J. Liu, T. Ng, and G. Wang, "NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016 2016, pp. 1010-1019, doi: 10.1109/CVPR.2016.115.
[5] J. Liu, A. Shahroudy, M. L. Perez, G. Wang, L. Duan, and A. K. Chichung, "NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1-1, 2019, doi: 10.1109/TPAMI.2019.2916873.
[24]Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., ... & Natsev, P. The kinetics human action video dataset. arXiv 2017. arXiv preprint arXiv:1705.06950.

RESULT & DISCUSSION

CONCLUSSION

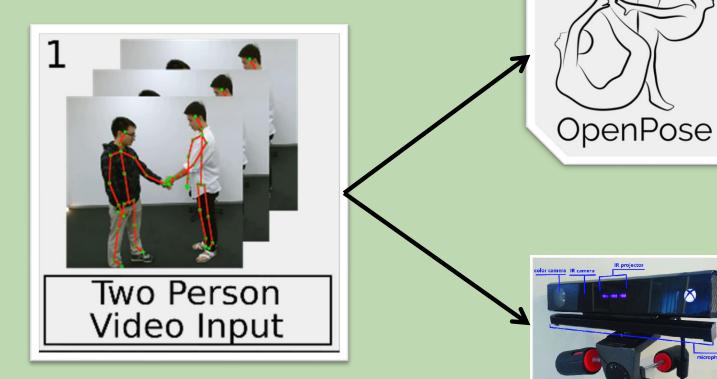
Proposed Framework

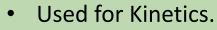


RESULT & DISCUSSION

CONCLUSSION

Proposed Framework Skeleton-Extraction





- Input:
 - RGB Images or video
- Outputs:
 - 2D Coordinate for each joint.
 - 1D confidence score for each joint detection.

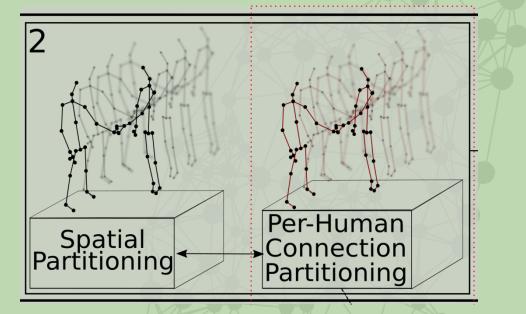
- Not used, only used the dataset which already provide the coordinate.
- 3D coordinate for each joint detection. (2D and 1D depth)
- Directly using skeleton data.
- Used NTU-RGB+D 60 and NTU-RGB+D 120

RESULT & DISCUSSION

CONCLUSSION

Methodology Feature Engineering

- **Spatial Partitioning**, to capture the relationship for each joint from the same people.
 - There are no representation to capture the relationship of two people interaction.
- Introduce Per-Human Connection Partitioning.
 - To capture interaction feature.



Feature extraction

General flow:

- The coordinate data which is 2D or 3D will be convolving to each other to get the spatial feature.
- The temporal feature is extracted by convolving through the same joints in consecutive frames.
- By combining each joint from every frame and stack for each frame, an image like data will be produced.



Methodology Feature Representation

- Extracted feature is classisified into different class.
- Using SoftMax Classifier

⁴Prediction Action Classification

CONCLUSSION

Batch Norm

METHODOLOGY

RESULT & DISCUSSION

Glob

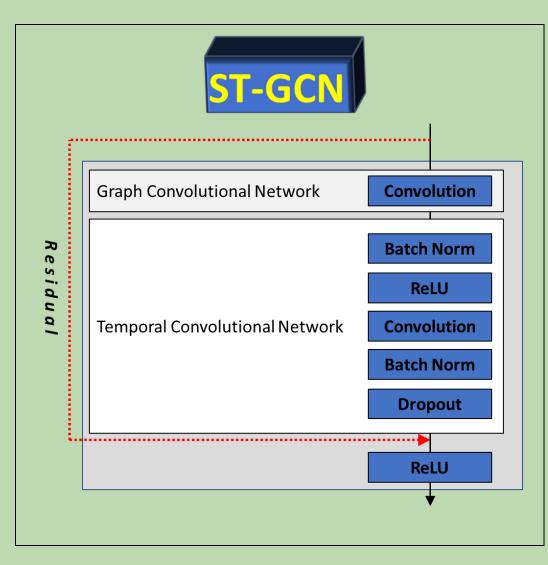
Softmax

Spatial-Temporal Graph Convolutional Network Network T-GCN ST-GCN ST-GCN ST-GCN ST-GCN ST-GCN ST-GCN ST-GCN

256 Channel output 128 Channel output **64 Channel output**

- Batch Normalization(BN) is used before ST-GCN.
- Global Average Pooling at the end of ST-GCN before SoftMax.
- Dropout mechanism is used by factor 0.5.
- The stride parameter is set to 2 for the 4th layer and the 7th layer. (all using 1 stride).

Spatial-Temporal Graph Convolutional Network



- 2 BN, 2 Convolution, 2 Relu, Residual, and Dropout.
- The modification of this work only on Graph Convolution part.

PAM

Skeleton Graph Convolutional Network

3

$$Y = M \circ \widetilde{A} X W$$

$$I \qquad f_{out}(v_i) = \sum_{v_j \in \beta_i} \frac{1}{Z_{ij}} f_{in}(v_j) W((l_i(v_j))),$$

• Uni-Labelling strategy.

•
$$f_{out} = \Lambda^{-\frac{1}{2}} (A + I) \Lambda^{-\frac{1}{2}} f_{in} W$$

• A represent the adjacency for intra conection, I for self-connection.

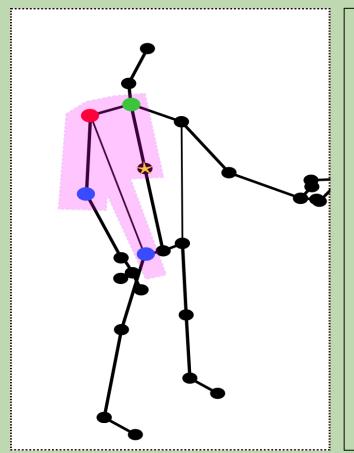
• Spatial configuration partitioning
•
$$f_{out} = \sum_{k}^{Kv} W_k(f_{in}A_k)$$

• $A_k = \Lambda_k^{-\frac{1}{2}} (\bar{A}_k) \Lambda_k^{-\frac{1}{2}}$
• $\sum_k A_k = A + I$; k = each subset, A_k , K_v =

- *M* are a weight matrix for each adjency matrix in \widetilde{A} or A_k .
- $\Lambda_k^{ii} = \sum_j (\bar{A}_k^{ij}) + \alpha$, with $\alpha = 0.01$ to avoid empety rows.
- • Hadamard product (element-wise product),
- $M \in \mathbb{R}^{n \times n}$ is the trainable weights for edges,
- $W \in \mathbb{R}^{n \times d_{out}}$ is the trainable weights for for vertexes.

3

Mapping Function for Spatial configuration partitioning

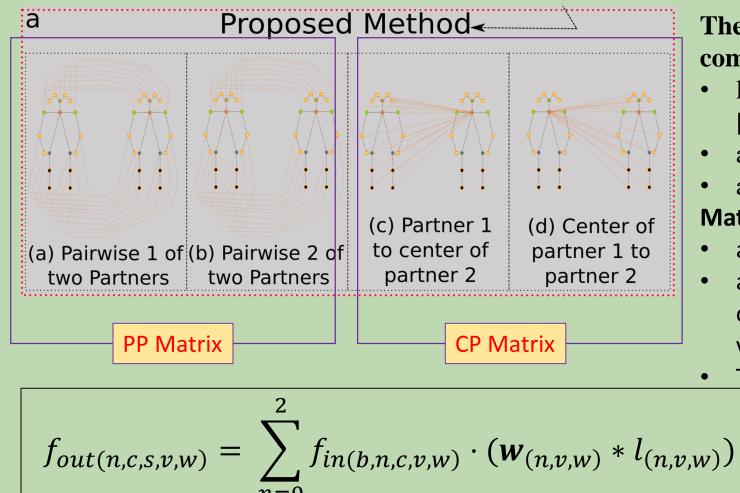


 The adjacency matrix is built based on the distance to the gravity center of the skeleton. The nodes will be labeled as follow:

$$l_{ti}(v_{tj}j) = \begin{cases} 0 & if r_j = r_i & \text{Root node} \\ 1 & if r_j < r_i & \text{Centripetal nod} \\ 2 & if r_j > r_i & \text{Centrifugal nod} \end{cases}$$

• *r_i* is the average distance from the gravity center to joint *i* over all frames in the training set.

Pairwise-Graph-Connectivity



The proposed PAM was inspired by the combination of:

- learnable edge importance weighting in [<u>11</u>],
- a pairwise adjacency matrix in [<u>34</u>],
- a join graph in [<u>41</u>, <u>42</u>]

Matrix proposed:

- all joints to all corresponding joints (PP)
- all joints in the first skeleton to the center of gravity on the second skeleton and vice versa (CP)
- The combinations (PCP)

Evaluation Procedure

NTU RGB+D 60 [4]

- Cross-Subject (CS) :
 - Training: 40,320 data
 - Testing: 16,560 data
 - based on actor of the video (one subset for training, the rest for validation).
- Cross-View(CV):
 - Training: 37,920 clips
 - Testing: 18,960 clips.
 - based on camera view (2 and 3 for training, 1 for validation).

NTU RGB+D 120 [5]

- Cross-Subject:
 - Each group consists of 53 subjects.
- Cross-Setup:
 - Training: Camera ID with event number
 - Testing: Camera ID with odd number.
 - 16 camera setup each subset.

[5] J. Liu, A. Shahroudy, M. L. Perez, G. Wang, L. Duan, and A. K. Chichung, "NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1-1, 2019, doi: 10.1109/TPAMI.2019.2916873.

^[4] A. Shahroudy, J. Liu, T. Ng, and G. Wang, "NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016 2016, pp. 1010-1019, doi: 10.1109/CVPR.2016.115.

Evaluation Procedure

• Selected Action from Kinetics-Dataset.

- 400 action class from 300k YouTube video clips
- extract the skeleton data with OpenPose

No.	Action Name	No.	Action Name
1.	Hugging	5.	Massaging person's head
2.	Massaging back	6.	Haking hands
3.	Massaging Feet	7.	Slapping
4.	Massaging Legs	8.	Tickling

[24]Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., ... & Natsev, P. The kinetics human action video dataset. arXiv 2017. arXiv preprint arXiv:1705.06950.

Experimental Settings

In general,

- Optimization
 - Stochastic Gradient Descent (SGD) + Nesterov Momentum (0.9) in GCN
- Loss function
 - Cross-Entropy + weight decays 0.0001.

NTU RGB+D 120 and NTU RGB+D 60

- All data (single / two person) is formated to have 2 people and 300 frames in each video.
- If there is just one person, the second person coordinates are filled by zero.
- If the length of the video frame is less than 300 -> repeat until reach 300.
- Learning rate: 0.1 For the training option of GCN
- Epoch: 80 (10 dividends on 60 and 70 epochs)

Experimental Settings

For the	300 frames in every sample where two-perso frame.	on present	s in each
Kinetics dataset	The 300 frames sample is obtained by the sa augmentation mode in NTU RGB+D	me data	
	Learning rate: 0.1		

Epoch: 65 (10 dividends on epoch 45 and 55.)

NTU-RGB+D 120 (1/2)

Model	Mode	CS	CV	
ST-LSTM [<u>45</u>]	MA	63.0	66.60	
GCA-LSTM [<u>46</u>]	MA	70.60	73.70	
FSNET [<u>20</u>]	MA	61.20	69.70	
LSTM-IRN [<u>15</u>]	MA	77.70	79.60	
ST-GCN-PAM(PP)	MA	80.17	85.56	
ST-GCN-PAM(CP)	MA	78.93	82.87	
ST-GCN-PAM(PCP)	MA	83.28	88.36	
PP=Pairwise of two partners; CP=partner-1 to the center of partner-2 and vice				
versa; PCP = use both PP and CP; MA = trained and tested on mutual actions				
only.				

NTU-RGB+D 120 (2/2)

Model	Mode	CS	CV
	MH	78.7	79.26
ST-GCN [<u>11</u>]	AD	74.6	71.95
	MH	72.0	72.43
Js-AGCN [<u>12</u>]	AD	74.0	70.22
	MH	79.28	74.08
Bs-AGCN [<u>12</u>]	AD	75.23	70.83
	MH	76.91	80.34
2s-AGCN [<u>12</u>]	AD	79.55	78.90
*ST CCN DANA(Ours)	MH	82.1	80.91
*ST-GCN-PAM(Ours)	AD	73.87	76.85

MH = Tested on mutual action subset only; AD=Tested on all actions label, *PCP

NTU-RGB+D 60

	F2CS		ST-GCN-PAM	
Action	Precision	Recall	Precision	Recall
Punching	90	91	97	92
Kicking	88	86	96	95
Pushing	82	80	89	82
Pat on back	88	91	84	90
Point finger	92	83	99	91
Hugging	88	91	95	89
Giving something	90	95	94	90
Touch other's	95	94	99	95
Handshaking	96	97	99	98
Walking toward	76	77	97	94

Kinetics dataset

Model	Top-1	Top-5
ST-GCN [<u>11</u>]	24.98	43.53
2s-AGCN [<u>12</u>]	44.96	90.34
ST-GCN-PAM(Ours)	41.68	88.91

Conclussion

An enhancement of ST-GCN was proposed by employing PAM to be able to capture the relationship between the two-person skeletons.

The proposed ST-GCN-PAM outperforms the-state-of-the-art on TPIR or mutual action of NTU RGB+D 120 by achieving 83.28% (cross-subject) and 88.31% (cross-view) accuracy.

The model is also superior to original ST-GCN on the multi-human action of the Kinetics dataset by achieving 41.68% in Top-1 and 88.91% in Top-5.

Thank You