DETECTION OF SHIP WAKES IN SAR IMAGERY USING CAUCHY REGULARISATION

Tianqi Yang | Oktay Karakuş | Alin Achim

Engineering and Physical Sciences Research Council

Visual Information Laboratory

 \bullet \bullet \bullet

Background

Methodology

]4

Results

Summary

[] Background

0

igodot

• SAR image formation model :

 $Y = CX + N_1$

where $C = R^{-1}$ represents the inverse Radon transform.

$$p(X|Y) = \frac{p(Y|X)p(X)}{\int p(Y|X)p(X)dX}$$

• the unnormalised posterior

 $p(X|Y) \propto p(Y|X)p(X).$

$$\hat{X}_{MAP} = \arg\max_{X} p(X|Y) = \arg\min_{X} F(X)$$

where F(X) is denoted as the cost function.

$$F(X) \propto f(x) + g(x)$$

$$\begin{cases} f(x) = \|Y - CX\|_2^2 \\ g(x) = -\log(p(X)) \end{cases}$$

Background

$$p(X) \propto \frac{\gamma}{\gamma^2 + X^2}$$

• The minimization with Cauchy regularization :

[]2 Methodology

$$\widehat{X}_{Cauchy} = \arg\min_{x} \|Y - CX\|_{2}^{2} - \sum_{i,j} \log\left(\frac{\gamma}{\gamma^{2} + X_{i,j}^{2}}\right)$$

Moreau-Yoshida unadjusted Langevin algorithm (MYULA)

Moreau-Yoshida unadjusted Langevin algorithm (MYULA)

Algorithm I MYULA for Cauchy regularized cost function

```
Input: SAR image Y, \gamma \in [0.0001, 0.1]
```

Output: Radon image X

```
Set: \delta = 1/25L, \omega = 1/4L
```

do

 $Z^{(i+1)} \sim N(0, \mathbb{I}_d)$

$$X^{(i+1)} = \left(1 - \frac{\delta}{\omega}\right) X^{(i)} - \delta \nabla f(X^{(i)}) + \frac{\delta}{\omega} prox_g^{\omega}(X^{(i)}) + \sqrt{2\delta} Z^{(i+1)}$$

while $\epsilon^{(i)} > 10^{-3}$ or $i < MaxIter$

Cauchy proximal operator :

$$prox_{g}^{\omega}(x) = \arg\min_{u} \left[-\log\left(\frac{\gamma}{\gamma^{2}+u^{2}}\right) + \frac{\|u-x\|^{2}}{2\omega} \right]$$

By using Cardano's method :

$$prox_{g}^{\omega}(x) = \frac{x}{3} + s + t$$

$$s = \sqrt[3]{\frac{q}{2} + \Delta}, \qquad t = \sqrt[3]{\frac{p}{2} - \Delta}, \qquad \Delta = \sqrt{\frac{p^{3}}{27} + \frac{q^{2}}{4}}$$

$$p = \gamma^{2} + 2\omega - \frac{x^{2}}{3}$$

$$q = x\gamma^{2} + \frac{2x^{3}}{27} - \frac{x}{3}(\gamma^{2} + 2\omega)$$

[]2_Methodology

• The confirmation of the candidate :

$$F_I = \bar{I}_w / \bar{I} - 1.$$

where \bar{I}_w is the mean value over the un-confirmed wake, and \bar{I} is the mean intensity of the image.

 $\begin{cases} F_I < 0 \text{ for turbulent wakes,} \\ F_I > 0.1 \text{ for narrow-V and Kelvin wakes} \end{cases}$

Table 1. Visible wakes in used image dataset *

Image	Turbulent	1 st Narrow	2 nd Narrow	1 st Kelvin	2 nd Kelvin
CSM_1	1	1	0	0	0
CSM_2	1	1	0	0	0
CSM_3	1	1	0	1	0
CSM_4	1	1	0	1	0
CSM_5	1	1	0	0	0
CSM_6	1	1	0	0	0

* 1 means visible and 0 represents invisible

Table 2. Detection results over 6 COSMO-SkyMed images

	TP	TN	FP	FN	%Accuracy
Cauchy	40.0%	46.7%	6.7%	6.7%	86.7%
GMC	36.7%	40%	20%	3.3%	76.7%
Graziano	33.3%	36.7%	16.7%	13.3%	70.0%

- The use of Cauchy distribution in ship wake detection problem.
- Realization of MYULA in image reconstruction from SAR imagery.
- Implementation of proximal Cauchy operator in solving inverse problem.

- This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) under grant EP/R009260/1 (AssenSAR).
- Tianqi Yang, Oktay Karakuş, Alin Achim are with the Visual Information Lab, University of Bristol

Thank You !***

E-mail: yang_tq@outlook.com; o.karakus@bristol.ac.uk; Alin.Achim@bristol.ac.uk Project website: assensar.blogs.bristol.ac.uk

• • • •