Christina Boucher, Travis Gagie, Tomohiro I, Dominik Köppl, Ben Langmead,

PHONI

 Giovanni Manzini, Gonzalo Navarro, Alejandro Pacheco, Massimiliano RossiStreamed Matching Statistics with Multi-Genome References

matching statistics (MS)

how fits banana into bandana?
why? MS \Rightarrow maximal exact matches (MEMs) \Rightarrow seed and extend \Rightarrow read alignment

matching statistics (MS)

$$
T=\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\mathrm{~b} & \mathrm{a} & \mathrm{n} & \mathrm{~d} & \mathrm{a} & \mathrm{n} & \mathrm{a}
\end{array} \quad P=\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
\mathrm{~b} & \mathrm{a} & \mathrm{n} & \mathrm{a} & \mathrm{n} & \mathrm{a}
\end{array}
$$

- text T
- pattern P
matching statistics (R, L) is
- $P[i . . i+L[j]-1]=T[R[i] . . R[i]+L[i]-1]$
- $P[i$.. $i+L[i]]$ does not occur

$$
\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 \\
P= & b & a & n & a & n & a \\
R= & 5 & 6 & 5 & 6 & 2 \\
L= & 3 & 2 & 3 & 2 & 1
\end{array}
$$

matching statistics (MS)

longest prefix of $P[1 .$.$] occurring in T$

matching statistics (MS)

$$
\begin{array}{llllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
$$

$$
T=\mathrm{b} a \mathrm{a} d \mathrm{a} n \mathrm{a} \quad P=\mathrm{b} \text { a } \mathrm{n} \text { a } \mathrm{n} \text { a }
$$

$$
(1,3)
$$

$(5,3)$
$(6,2) \longmapsto$
$(5,3)$
$(6,2) \longmapsto$
$(2,1) \longmapsto_{5}$

matching statistics (MS)

$$
\begin{aligned}
& \begin{array}{lllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& T=\mathrm{b} a \mathrm{n} \mathrm{~d} \mathrm{a} \mathrm{n} \text { a } \quad P=\mathrm{b} a \mathrm{n} \mathrm{a} \mathrm{n} \mathrm{a} \\
& (1,3) \longmapsto \\
& (5,3) \\
& 123456 \\
& P=b \text { a } n \text { a } n a \\
& R=\begin{array}{lllllll}
1 & 5 & 6 & 5 & 6 & 2
\end{array} \text { obtain MS } \\
& (5,3) \\
& (6,2) \longmapsto
\end{aligned}
$$

matching statistics (MS)

$$
T=\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array} \quad P=\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
\mathrm{~b} & \mathrm{a} & \mathrm{n} & \mathrm{~d} & \mathrm{a} & \mathrm{n} \\
\mathrm{a} & \mathrm{a} & \mathrm{n} & \mathrm{a}
\end{array}
$$

R not uniquely defined
$(2,1)$
$(5,1)(7,1)$
-
-
$(2,1) \longmapsto_{7}$

MS computation

used data	space	time		
structure	in bits	build	query	authors
suffix tree (ST)	$\mathrm{O}(n \lg n)$	$\mathrm{O}(n)$	$\mathrm{O}(\|P\| \lg \sigma)$	folklore
compressed ST (CST)	$\mathrm{O}(n \lg \sigma)$	$\mathrm{O}(n)$	$\mathrm{O}(\|P\| \lg \sigma)$	Belazzougui+ '18
r-index + grammar	$\mathrm{O}(r \lg n+$ $\left.z \lg ^{2} n\right)$	$\mathrm{O}(n \lg r)$	$\mathrm{O}(\|P\|$ $(\mid \lg r+\lg \lg n))$	Bannai+ '20 Rossi+ '21

$n=|T|, \quad \sigma:$ alphabet size, $\quad r: \# r u n s$ in BWT, $\quad z: \# L Z 77$ factors

space important?

construction of CST with

- T : up to 1000x Chromosome 19 samples
- 64 GB of RAM available
\Rightarrow can index only 64 sequences!

- Chromosome 19 needs ~ 60 MB in ASCII
- CST implementation: cst_sct3 of sdsl-lite

space important?

MONI [Rossi+ RECOMB '21]:

- r-index [Gagie+ '20],
- Big BWT [Boucher+ '19],
- and data structures for MS memory requirement scales roughly logarithmic!

\# sequences in T
log scale

MONI : augmented r-index

steps:

- determine R by backward search
- then compute L :
- scan R and P from left to right
- random access to T for computing $L[i]=\operatorname{LCP}(T[R[]] .],. P[i .]$.
- needs to store P and R
- for large P : streaming P and MS becomes interesting

MS computation

BWT	F
a	$\$$
n	a\$
d	ana\$
b	andana\$
$\$$	bandana\$
n	dana\$
a	na\$
a	ndana\$

for this talk simplified:

- BWT instead of r-index
- only compute L
- compute R with suffix array (SA)
(r-index: SA entries for each run boundary)

backward steps

text
position

matching pair

continue backward steps

continue backward steps

find continuation again

from LCP to LCE

LCE grammar

grammar answering longest common extension (LCE) queries

- use RePair + prefix free parsing [Gagie+ '19]
- random access on SLP [Gagie+ '20] SLP = straight line program (special kind of grammar)
- already used in MONI for random access on T

prefix free parsing (PFP)

- factorize T context-sensitively
- same substrings have nearly same factorization

$$
T=\begin{array}{ccc}
& S & \\
& F_{1} \quad F_{2} & F_{3} \quad F_{4} \rightarrow F_{5}
\end{array}
$$

prefix free parsing (PFP)

- build grammar on each factor F_{x} independently
- build grammar on roots

$$
T=\begin{array}{|l|l|l|l|l|}
\hline F_{1} & F_{2} & F_{3} & F_{4} & F_{5} \\
\hline
\end{array}
$$

$\operatorname{LCE}\left(p_{1}, p_{2}\right)=\operatorname{LCP}\left(T\left[p_{1} ..\right], T\left[p_{2} ..\right]\right)$

- traverse from root down
- compare character-wise

but this is slow

- slower than MONI
- the larger T the faster the execution of PHONI
why is the latter?
- the larger T the less likely backward search fails
time for MS per sequence

\# sequences in T

$$
P=\text { one of } 10 \times \text { Chromosome } 19 \text { sequences not in } T
$$

faster LCE queries

- character-wise comparison will hit factor boundary at the same time
\Rightarrow ascend and compare node by node!

with faster LCEs ...

PHONI faster than MONI at $T=1000$ sequences!
time for MS per sequence

\# sequences in T
(y axis is closer zoomed)

MONI / PHONI : build dependencies

index construction

T consists of multiple Chromosome 19 sequences

maximal RAM usage during queries

MONI additionally needs

- thresholds,
- each pattern and its R stored in RAM

\# sequences in T

$$
P=\text { one of } 10 \times \text { Chromosome } 19 \text { sequences not in } T
$$

maximal RAM usage during queries

- fix $T=64$ sequences
- let $P=\left(P_{1}, \ldots, P_{10}\right)$
- compute MS for the prefix of P_{i} covering $x \%$ of P_{i}

pattern prefix (\%)

what is PHONI?

- computation of matching statistics for highly repetitive T (e.g. $T=$ pan-genome)
- stands on the shoulders of giants:
- r-index [Gagie+ '20] [Bannai+ '20]
- Big BWT [Boucher+ '19]
- PFP grammar [Gagie+ '20]
our contribution:
- LCE queries on PFP grammars
- theoretically inferior to MONI, but practically competitive if
- Pis large : since we can stream P, and
- large parts of P occur in T \Rightarrow only few LCE queries

