Fall Detection in RGB-D Videos by Combining Shape and Motion Features

Durga P. Kumar, Yixiao Yun, Irene Yu-Hua Gu

Signal Processing Group, Dept. of Signals and Systems, Chalmers Univ. of Technology, Gothenburg, Sweden

IVMSP-L10.2, ICASSP 2016 16:20 - 16:40, March 25, 2016 | Shanghai, China

Outline

1. Introduction Addressed Problems, Motivations, ...

2. The Proposed Method

3. Experimental Results Dataset, Evaluations, ...

4. Conclusion

Addressed Problem

Fall detection in RGB-D videos

Applications

Elderly care, e-Health, assisted living, ... Observations

- Drastic pose change
- Large physical movement

Brief Review

- Bounding box based features
 [Debard'12], [Charfi'13], ...
 Insufficient description of motion from using the bounding box sorely
- Multiple cameras (3D modeling) [Auvinet'11], [Mastorakis'14], [Stone'15], ... Computationally demanding

Motivations

- Reduce the risk (bone fracture, coma, death, ...) due to falls
- Automatically detect falls and trigger alarms
- Effectively detect falls from a single camera view
- Exploit the **spatio-temporal** features of **pose change** and **body motion**

Main Novelties

- Extract effective time-dependent (spatio-temporal) features:
 - Global shape+motion from RGB videos
 - Local shape+motion from Depth videos
- **Combine** different features for fall detection through classification of 2 most confusing classes (falls vs. lie-down)
- Study the contribution of individual component feature to overall performance

Foreground Human Detection

Foreground Human Detection

1. Differencing consecutive **RGB** frames

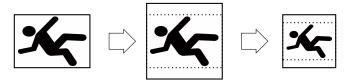
Foreground Human Detection

- 1. Differencing consecutive **RGB** frames
- 2. SURF keypoint detection in difference images

Foreground Human Detection

- 1. Differencing consecutive **RGB** frames
- 2. SURF keypoint detection in difference images
- 3. ROI defined by **bounding box of keypoints**

Shape Features (RGB)



• Size normalization of ROI:

$$(w, h) \Rightarrow (I, I) \Rightarrow (\lambda, \lambda)$$

 Shape features are implicitly represented by HOG (Histogram of Oriented Gradients) descriptors

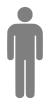
D.P. Kumar, Y. Yun, I.Y.H. Gu Fall Detection in RGB-D Videos by Combining Shape and Motion Features 8 / 19

Motion Features (RGB)

Based on **HOGOF** (Histogram of Oriented Gradients of Optical Flow)

- 1. Optical flow is estimated between normalized ROIs
- 2. Magnitudes and orientations of optical flow are color-coded by HSV (hue, saturation)
- Motion features are implicitly represented by HOG descriptors

Target Contour Extraction



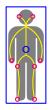
Target Contour Extraction

• Corresponding ROI in **depth** video frames

Target Contour Extraction

Corresponding ROI in **depth** video frames
Morphological skeleton estimated from ROI of depth video

Target Contour Extraction



- Corresponding ROI in depth video frames
- Morphological skeleton estimated from ROI of depth video
- 8 local extrema obtained from the skeleton
 + 1 centroid

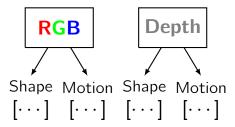
Shape Features (Depth)

- (*x*, *y*) **coordinates** of contour centroid and local extrema
- Distances between centroid and local extrema
- Orientation and aspect ratio of the bounding box
- **Eccentricity** of the ellipse bounded by the rectangular box

Motion Features (Depth)

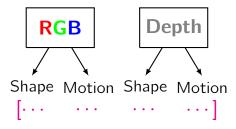
- Based on consecutive frames
- Gradient of distances between centroid and local extrema
- Inter-frame speed of centroid and local extrema

Feature Fusion (RGB+D)



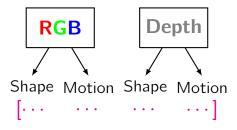
 For each frame, features extracted from RGB and depth images are concatenated

Feature Fusion (RGB+D)



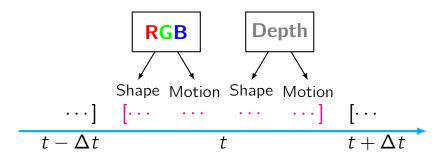
 For each frame, features extracted from RGB and depth images are concatenated

Time-Dependent Features



• For each video event, augmented features of each frame are **temporally stacked**

Time-Dependent Features



• For each video event, augmented features of each frame are **temporally stacked**

Length Norm. of Video Events

• A video event of length *L* (#frames)

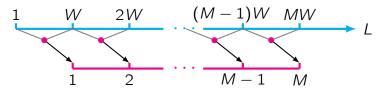
L

Length Norm. of Video Events

1 W 2W (M-1)W MW

- A video event of length *L* (#frames)
- Divided into *M* (fixed) segments, each of length *W* = [*L*/*M*]

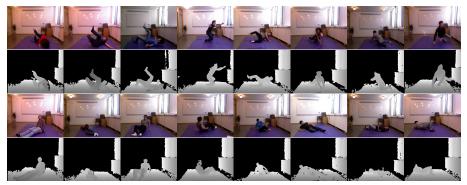
Length Norm. of Video Events



- A video event of length *L* (#frames)
- Divided into *M* (fixed) segments, each of length *W* = [*L*/*M*]
- In each segment, features averaged over W frames ⇒ normalized length M

Experimental Results

RGB-D Dataset



Class#	Activity	#Subjects	#RGB Video	#Depth Video
1	Falling down	20	400	400
2	Lying down	20	400	400

Experimental Results

Setup

- Normalized length of video events: M = 10
- Binary C-SVM + RBF kernel
- Case-1: 50% training, 50% testing
- Case-2: 80% training, 20% testing

Experimental Results

Results and Evaluations on Test Set

(a) Case-1: fusion vs. standalone features						
Feature	Detection rate (%)	FNR (%)	FPR (%)			
HOG	93.75	6.25	5.00			
HOGOF	94.00	6.00	4.00			
Contour	92.75	7.25	9.00			
Fusion	95.25	4.75	5.00			

(b) Case-1 vs. Case-2

Case	Detection rate (%)	FNR (%)	FPR (%)
1	95.25	4.75	5.00
2	97.50	2.50	2.50

Conclusion

- **Spatio-temporal** features of pose change and body motion are exploited
- **Time-dependent shape+motion** features from RGB and depth videos are combined
- Trained on large number of RGB-D videos, results on test set showed high detection rate (97.5%) and low false alarms (2.5%)

Future Work: Extend the method and tests on more video activities