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Mixed Poisson Gaussian noise

General model

We observe y ∈ RN according to the following model

y = z + w.

• z ∈ RN  Poisson noise (z ∼ P(Hx))

• x ∈ RQ  unknown original signal

• H ∈ RN×Q  observation operator

• w ∈ RN  additive Gaussian noise (w ∼ N (0, σ2))

Where?

I CCD camera images [Healey et al. 1994]

I Medical images [Nichols et al. 2002]

I Biological images (fluorescence microscopy) [Pawley 1994]

I Astronomical images [Benvenuto et al. 2008]
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Mixed Poisson Gaussian noise

xmax = 20 xmax = 60 xmax = 100 xmax = 150

σ2 = 9 σ2 = 36 σ2 = 36 σ2 = 40

H blur with PSF H blur with PSF H blur with PSF H blur with PSF

h: Uniform 5× 5 h: Gaussian 9× 9 h: Uniform 3× 3 h: Gaussian 7× 7

std 0.5 std 1

Objective?

 Provide an estimate x̂ of x from the collected data y.
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Bayesian formulation

Observation model: y = z + w, z ∼ P(Hx), w ∼ N (0, σ2)

p(y | x) =
M∏
i=1

(
+∞∑
n=1

e−[Hx]i ([Hx]i )
n

n!

e−
1

2σ2 (yi−n)2

√
2πσ2

)

Prior distributions:

p(x | γ) = τγ
N

2κ exp

(
−γ

Q∑
j=1

‖Djx‖2κ

)
p(γ) ∝ γα−1 exp(−βγ)

Bayes formula: p(x | y, γ) ∝ p(x | γ)p(y | x)p(γ).

7 Difficulties: p(x | y, γ) of a complicated form
I MAP estimation: tuning parameters
I Posterior mean: intractable

X Solutions:
I MCMC methods: computationally expensive
I Variational Bayesian (VB) approaches
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Variational Bayesian methodology

Let us denote Θ the set of the unknown parameters

Principle: provide a separable approximation
q(Θ) =

∏J
j=1 q(Θj) of the true posterior distribution p(Θ | y)

Optimization problem:

qopt = argmin
q
KL(q(Θ)‖p(Θ | y)) s.t. q is a p.d.f

where

KL(q(Θ)‖p(Θ | y)) =

∫
q(Θ)

q(Θ)

p(Θ | y)
dΘ

An analytical solution (classical variational Bayesian methods) is :

(∀j ∈ {1, . . . , J}) q(Θj) ∝ exp
(
〈p(y,Θ)〉∏

i 6=j q(Θi )

)
,

where 〈 · 〉∏
i 6=j q(Θi ) =

∫
·
∏

i 6=j q(Θi ) dΘi
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Assumptions and approximations

• Separability: We assume that

q(Θ) = q(x)q(γ)

• Generalized Anscombe Transform (GAST)
approximation
The likelihood of vector ỹ ∈ RM with components
(ỹi )1≤i≤M = 2

(√
yi + δ

)
1≤i≤M , where δ = 3

8 + σ2, is
approximately given by

p(ỹ | x) =
M∏
i=1

1√
2π

exp

(
−1

2

(
ỹi − 2

√
[Hx]i + δ

)2
)

7 Difficulties: p(x, γ | y) is of a complicated form

X Solutions: Majorizing approximations
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Construction of the majorizing approximations

• Majorant function of the neg-log likelihood :
Let w = (wi )1≤i≤M ∈ [0,+∞)M .
Since the function t 7−→

√
t + δ is concave with a Lipschitz

continuous gradient, then T (ỹ, x; w) =
M∑
i=1

Ti (ỹi , [Hx]i ;wi )

where, for every i ∈ {1, . . . ,M},

Ti (ỹi , [Hx]i ;wi ) =
1

2
ỹ2
i + 2 ([Hx]i + δ)− 2ỹi

√
wi + δ

− ỹi (wi + δ)−
1
2 ([Hx]i − wi )

+
1

4
δ−

3
2 ỹi ([Hx]i − wi )

2 .

is a majorant of − log p(ỹ | x).
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Construction of the majorizing approximations

• Majorant function of the neg-log prior of x :
Let λ = (λj)1≤j≤Q ∈ [0,+∞)Q .
Using the following inequality:

(∀υ ≥ 0)(∀ν > 0) υκ ≤ (1− κ)υκ + κυκ−1ν,

then Q(x, γ;λ)=
Q∑
j=1

Qj(Djx, γ;λj) where for every

j ∈{1, . . . ,Q},

(∀j ∈{1, . . . ,Q}) Qj(Djx, γ;λj) = γ
κ‖Djx‖2 + (1− κ)λj

λ1−κ
j

.

is a majorant of − log p(x).



Introduction Proposed method Simulations Conclusion

Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise. 9/17

Construction of the majorizing approximations

Let

L(Θ|ỹ; w,λ) = C (ỹ) exp [−T (ỹ, x; w)− Q(x, γ;λ)] p(γ)

where C (ỹ) = p(ỹ)−1(2π)−M/2τγ
N
2κ

Then

I p(Θ | ỹ) > L(Θ|ỹ; w,λ)

I KL(q(Θ)‖p(Θ | ỹ)) ≤ KL(q(Θ)‖L(Θ|ỹ; w,λ))
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To recap...

Let Θ(x, γ), q(Θ) = q(x)q(γ)

Optimization problem:

q(Θ) = argmin
q
KL(q(Θ)‖p(Θ | ỹ)) (1)

Majoration: KL(q(Θ)‖p(Θ | ỹ)) ≤ KL(q(Θ)‖L(Θ|ỹ; w,λ))
Then Thus, Problem (1) can be solved by alternating the following
steps:

I Mimimize KL(q(Θ)‖L(Θ|ỹ; w,λ)) w.r.t. q(x),

I Update the auxiliary variable w in order to minimize
KL(q(Θ)‖L(Θ|ỹ; w,λ)),

I Update the auxiliary variable λ in order to minimize
KL(q(Θ)‖L(Θ|ỹ; w,λ)),

I Mimimize the KL(q(Θ)‖L(Θ|ỹ; w,λ)) w.r.t. q(γ).
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Updating q(x)

qk+1(x) ∝ exp

(〈
ln L(x, γ, y; wk ,λk)

〉
qk (γ)

)
∝ exp

(∫
ln L(x, γ, y; wk ,λk)qk(γ)dγ

)
= N (x;mk+1,Σk+1){

Σ−1
k+1 = 1

2δ
− 3

2 H>Diag(ỹ)H + 2Eqk (γ)D
>ΛkD,

mk+1 = Σk+1H>u,
(1)

where

• u = (ui )16i6M , ui = ỹi (w
k
i + δ)−

1
2 + 1

2 ỹiδ
− 3

2wk
i − 2

• Λ is the diagonal matrix whose diagonal elements are(
κ(λkj )κ−1IS

)
1≤j≤Q

.
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Updating q(x)

qk+1(x) ∝ exp

(〈
ln L(x, γ, y; wk ,λk)

〉
qk (γ)

)
∝ exp

(∫
ln L(x, γ, y; wk ,λk)qk(γ)dγ

)
= N (x;mk+1,Σk+1){

Σ−1
k+1 = 1

2δ
− 3

2 H>Diag(ỹ)H + 2Eqk (γ)D
>ΛkD,

mk+1 = Σk+1H>u,
(1)

Implementation issues:

• Σk+1 is approximated by a diagonal matrix

• mk+1 is approximated iteratively using conjugate gradient



Introduction Proposed method Simulations Conclusion

Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise. 12/17

Updating w and λ

w
k+1 =argmin

w
KL(qk+1

(
x)qk(γ)‖L(Θ|ỹ; wk+1,λ)

)
=argmin

w

M∑
i=1

Ti (ỹi , [Hmk+1]i ;wi ),

= max{[Hmk+1]i , 0}

λk+1
j = argmin

λj∈[0,+∞)
KL(qk+1

(
x)qk(γ)‖L(Θ|ỹ; wk+1,λ)

)
.

= Eqk+1(x)

[
‖Djx‖2

]
= ‖Djmk+1‖2 + trace

[
D>j DjΣk+1

]
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Updating q(γ)

qk+1(γ) ∝ exp

(〈
ln L(x, γ, y; wk+1,λk+1)

〉
qk+1(x)

)
∝ exp

(∫
ln L(x, γ, y; wk+1,λk+1)qk+1(x)dx

)
= G(γ; ak+1, bk+1){

ak+1 = N
2κ + α = a,

bk+1 =
∑Q

j=1(λk+1
j )κ + β,
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Experiments

• Different count levels xmax

• Comparison with variationnal approaches:
I different PG likelihood approximations: Generalized Anscombe

Transform (GAST), the Exponential likelihood (Exp), the
Exact likelehood (Exact)

I different optimization algorithms: Spectral projected gradient
[Bajic et al. 1994], Primal-dual splitting algorithm
[Chouzenoux et al. 2015]
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Visual results

From top to bottom: Original images: xmax = (20, 60, 100, 150).
Degraded images: SSIM=(0.232, 0.423, 0.561, 0.586). Restored images

with the proposed approach: SSIM=(0.575, 0.653, 0.765, 0.830).
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Comparison with variational methods

MAP (GAST) [PG] MAP (GAST) [PD] MAP(EXP) [PD] MAP (Exact)[PD] BV (GAST)

First image (350× 350): xmax = 20

h: Uniform 5× 5, σ2 = 9

γ fixed fixed fixed fixed automatic
SNR 13.61 13.60 13.72 13.73 13.80
Time (s.) 2897 490 3124 48587 29

Second image (257× 256): xmax = 60

h: Gaussian 9× 9, std 0.5, σ2 = 36

γ fixed fixed fixed fixed automatic
SNR 15.35 15.33 15.42 15.43 15.22
Time (s.) 3168 86 112 612 7

Third image (256× 256): xmax = 100

h: Uniform 3× 3, σ2 = 36

γ fixed fixed fixed fixed automatic
SNR 13.71 13.77 13.81 13.81 14.17
Time (s.) 2921 578 1060 17027 9

Fourth image (256× 256): xmax = 150

h: Gaussian 7× 7, std 1, σ2 = 40

γ fixed fixed fixed fixed automatic
SNR 20.17 20.11 20.11 20.33 20.43
Time (s.) 2964 886 3026 43397 14

PG: projected gradient algorithm PD: primal dual algorithm

Simulations performed on an Intel(R) Xeon(R) CPU E5-2630, @ 2.40 GHz,

using a Matlab 7 implementation

• Comparable quantitative results with variational approaches

• Regularization parameter automatically tunned

• Competitive computation time
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In a nutshell...

 Variational Bayesian method for restoration of images
corrupted with mixed Poisson Gaussian noise

 Compared to variational approaches, the proposed method
shows:

X good quantitative and qualitative results
X competitive computation time

 Future work: extension to other PG likelihood approximations
and others prior distributions
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