| Introduction                                                                         | Proposed method                            | Simulations     | Conclusion |
|--------------------------------------------------------------------------------------|--------------------------------------------|-----------------|------------|
| 0000                                                                                 | 0000000                                    | 000             | 0          |
| Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise. |                                            |                 | 1/17       |
|                                                                                      |                                            |                 |            |
| Tast variational Dayesian                                                            | signal recovery in the presence of roisson | Gaussian Noise. | 1/11       |

# Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise.

Y. Marnissi<sup>1</sup>, Y. Zheng<sup>2</sup>, and J.-C. Pesquet<sup>1</sup>

 <sup>1</sup> Université Paris-Est, LIGM, UMR CNRS 8049, Champs sur Marne, France
<sup>2</sup> IBM Research, China
Presented by: Amel Benazza-Benyahiya<sup>3</sup>
<sup>3</sup> COSIM Lab., SUP'COM, Carthage Univ., Cité Té chnologique des Communications, Tunisia

#### March 22th 2016





| Introduction                 | Proposed method                           | Simulations     | Conclusion |
|------------------------------|-------------------------------------------|-----------------|------------|
| ●000                         | 0000000                                   | 000             | 0          |
| Fast variational Bayesian si | gnal recovery in the presence of Poisson- | Gaussian Noise. | 2/17       |

## Mixed Poisson Gaussian noise

#### General model

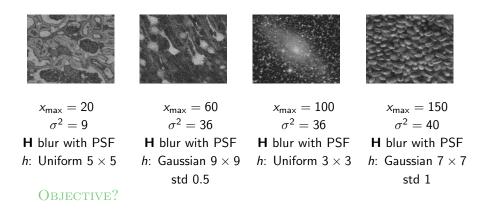
We observe  $\mathbf{y} \in \mathbb{R}^N$  according to the following model  $\mathbf{y} = \mathbf{z} + \mathbf{w}.$ •  $\mathbf{z} \in \mathbb{R}^N$   $\rightsquigarrow$  Poisson noise  $(\mathbf{z} \sim \mathcal{P}(\mathbf{H}\mathbf{x}))$ •  $\mathbf{x} \in \mathbb{R}^Q$   $\rightsquigarrow$  unknown original signal •  $\mathbf{H} \in \mathbb{R}^{N \times Q}$   $\rightsquigarrow$  observation operator •  $\mathbf{w} \in \mathbb{R}^N$   $\rightsquigarrow$  additive Gaussian noise  $(\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2))$ 

#### WHERE?

- ► CCD camera images [Healey et al. 1994]
- Medical images [Nichols et al. 2002]
- Biological images (fluorescence microscopy) [Pawley 1994]
- Astronomical images [Benvenuto et al. 2008]

| Introduction                                                                         | Proposed method | Simulations | Conclusion |
|--------------------------------------------------------------------------------------|-----------------|-------------|------------|
| 0000                                                                                 | 0000000         | 000         | 0          |
| Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise. |                 |             | 3/17       |
|                                                                                      |                 |             |            |
|                                                                                      |                 |             |            |

#### Mixed Poisson Gaussian noise



 $\rightarrow$  Provide an estimate  $\hat{\mathbf{x}}$  of  $\mathbf{x}$  from the collected data  $\mathbf{y}$ .

| Introduction                    | Proposed method                                                                      | Simulations | Conclusion |
|---------------------------------|--------------------------------------------------------------------------------------|-------------|------------|
| 0000                            | 0000000                                                                              | 000         | 0          |
| Fast variational Bayesian signa | Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise. |             |            |
|                                 |                                                                                      |             |            |

## Bayesian formulation

Observation model:  $\mathbf{y} = \mathbf{z} + \mathbf{w}$ ,  $\mathbf{z} \sim \mathcal{P}(\mathbf{H}\mathbf{x})$ ,  $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2)$ 

$$\mathsf{p}(\mathbf{y} \mid \mathbf{x}) = \prod_{i=1}^{M} \left( \sum_{n=1}^{+\infty} \frac{e^{-[\mathsf{H}\mathbf{x}]_i} \left( [\mathsf{H}\mathbf{x}]_i \right)^n}{n!} \frac{e^{-\frac{1}{2\sigma^2} (y_i - n)^2}}{\sqrt{2\pi\sigma^2}} \right)$$

PRIOR DISTRIBUTIONS:  $p(\mathbf{x} \mid \gamma) = \tau \gamma^{\frac{N}{2\kappa}} \exp\left(-\gamma \sum_{j=1}^{Q} \|\mathbf{D}_{j}\mathbf{x}\|^{2\kappa}\right) \qquad p(\gamma) \propto \gamma^{\alpha-1} \exp(-\beta\gamma)$ BAYES FORMULA:  $p(\mathbf{x} \mid \mathbf{y}, \gamma) \propto p(\mathbf{x} \mid \gamma)p(\mathbf{y} \mid \mathbf{x})p(\gamma)$ .

**X DIFFICULTIES:**  $p(\mathbf{x} | \mathbf{y}, \gamma)$  of a complicated form

- MAP estimation: tuning parameters
- Posterior mean: intractable

 $\checkmark$  Solutions:

- MCMC methods: computationally expensive
- Variational Bayesian (VB) approaches

| Introduction              | Proposed method                              | Simulations     | Conclusion |
|---------------------------|----------------------------------------------|-----------------|------------|
| 0000                      | 0000000                                      | 000             | 0          |
| Fast variational Bayesian | signal recovery in the presence of Poisson-0 | Gaussian Noise. | 5/17       |

## Variational Bayesian methodology

Let us denote  $\Theta$  the set of the unknown parameters

PRINCIPLE: provide a separable approximation  $q(\boldsymbol{\Theta}) = \prod_{j=1}^{J} q(\Theta_j)$  of the true posterior distribution  $p(\boldsymbol{\Theta} \mid \mathbf{y})$ 

#### **OPTIMIZATION PROBLEM:**

$$q^{opt} = \operatorname*{argmin}_{q} \mathcal{KL}(q(oldsymbol{\Theta}) \| p(oldsymbol{\Theta} \mid oldsymbol{y})) \quad ext{s.t.} \quad ext{q is a p.d.f}$$

where

$$\mathcal{KL}(q(\mathbf{\Theta}) \| \mathsf{p}(\mathbf{\Theta} \mid \mathbf{y})) = \int q(\mathbf{\Theta}) rac{q(\mathbf{\Theta})}{\mathsf{p}(\mathbf{\Theta} \mid \mathbf{y})} \; d\mathbf{\Theta}$$

An analytical solution (classical variational Bayesian methods) is :

$$\begin{array}{ll} (\forall j \in \{1, \ldots, J\}) \ q(\Theta_j) \propto \ \exp\left(\langle \mathsf{p}(\mathbf{y}, \mathbf{\Theta}) \rangle_{\prod_{i \neq j} q(\Theta_i)}\right), \\ \\ \text{where } \langle \cdot \rangle_{\prod_{i \neq j} q(\Theta_i)} = \int \cdot \prod_{i \neq j} q(\Theta_i) \ d\Theta_i \end{array}$$

| Introduction                 | Proposed method                             | Simulations     | Conclusion |
|------------------------------|---------------------------------------------|-----------------|------------|
| 0000                         | 0000000                                     | 000             | 0          |
| Fast variational Bayesian si | ignal recovery in the presence of Poisson-O | Gaussian Noise. | 6/17       |

## Assumptions and approximations

• SEPARABILITY: We assume that

$$q(\mathbf{\Theta}) = q(\mathbf{x})q(\gamma)$$

• GENERALIZED ANSCOMBE TRANSFORM (GAST) APPROXIMATION

The likelihood of vector  $\tilde{\mathbf{y}} \in \mathbb{R}^M$  with components  $(\tilde{y}_i)_{1 \leq i \leq M} = 2 \left( \sqrt{y_i + \delta} \right)_{1 \leq i \leq M}$ , where  $\delta = \frac{3}{8} + \sigma^2$ , is approximately given by

$$p(\tilde{\mathbf{y}} \mid \mathbf{x}) = \prod_{i=1}^{M} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\tilde{y}_{i} - 2\sqrt{[\mathbf{H}\mathbf{x}]_{i} + \delta}\right)^{2}\right)$$

**X** DIFFICULTIES:  $p(\mathbf{x}, \gamma | \mathbf{y})$  is of a complicated form  $\checkmark$  SOLUTIONS: Majorizing approximations

| Introduction                    | Proposed method                          | Simulations     | Conclusion |
|---------------------------------|------------------------------------------|-----------------|------------|
| 0000                            | 0000000                                  | 000             | 0          |
| Fast variational Bayesian signa | al recovery in the presence of Poisson-O | Gaussian Noise. | 7/17       |

#### Construction of the majorizing approximations

• MAJORANT FUNCTION OF THE NEG-LOG LIKELIHOOD : Let  $\mathbf{w} = (w_i)_{1 \le i \le M} \in [0, +\infty)^M$ . Since the function  $t \longmapsto \sqrt{t + \delta}$  is concave with a Lipschitz continuous gradient, then  $T(\tilde{\mathbf{y}}, \mathbf{x}; \mathbf{w}) = \sum_{i=1}^M T_i(\tilde{y}_i, [\mathbf{Hx}]_i; w_i)$  where, for every  $i \in \{1, ..., M\}$ ,

$$T_{i}(\tilde{y}_{i}, [\mathbf{H}\mathbf{x}]_{i}; w_{i}) = \frac{1}{2}\tilde{y}_{i}^{2} + 2([\mathbf{H}\mathbf{x}]_{i} + \delta) - 2\tilde{y}_{i}\sqrt{w_{i} + \delta}$$
$$- \tilde{y}_{i}(w_{i} + \delta)^{-\frac{1}{2}}([\mathbf{H}\mathbf{x}]_{i} - w_{i})$$
$$+ \frac{1}{4}\delta^{-\frac{3}{2}}\tilde{y}_{i}([\mathbf{H}\mathbf{x}]_{i} - w_{i})^{2}.$$

is a majorant of  $-\log p(\tilde{\mathbf{y}} \mid \mathbf{x})$ .

| Introduction                | Proposed method                             | Simulations     | Conclusion |
|-----------------------------|---------------------------------------------|-----------------|------------|
| 0000                        | 0000000                                     | 000             | 0          |
| Fast variational Bayesian s | ignal recovery in the presence of Poisson-O | Gaussian Noise. | 8/17       |

Construction of the majorizing approximations

• MAJORANT FUNCTION OF THE NEG-LOG PRIOR OF  $\mathbf{x}$ : Let  $\boldsymbol{\lambda} = (\lambda_j)_{1 \le j \le Q} \in [0, +\infty)^Q$ . Using the following inequality:

 $(\forall v \ge 0)(\forall v > 0) \quad v^{\kappa} \le (1 - \kappa)v^{\kappa} + \kappa v^{\kappa - 1}v,$ 

then 
$$Q(\mathbf{x}, \gamma; \boldsymbol{\lambda}) = \sum_{j=1}^{Q} Q_j(\mathbf{D}_j \mathbf{x}, \gamma; \lambda_j)$$
 where for every  $j \in \{1, \dots, Q\}$ ,

$$(\forall j \in \{1,\ldots,Q\}) \quad Q_j(\mathbf{D}_j\mathbf{x},\gamma;\lambda_j) = \gamma \frac{\kappa \|\mathbf{D}_j\mathbf{x}\|^2 + (1-\kappa)\lambda_j}{\lambda_j^{1-\kappa}}.$$

is a majorant of  $-\log p(\mathbf{x})$ .

| Introduction                | Proposed method                             | Simulations     | Conclusion |
|-----------------------------|---------------------------------------------|-----------------|------------|
| 0000                        | 0000000                                     | 000             | 0          |
| Fast variational Bayesian s | ignal recovery in the presence of Poisson-O | Gaussian Noise. | 9/17       |

Construction of the majorizing approximations

Let

$$L(\boldsymbol{\Theta}|\tilde{\mathbf{y}};\mathbf{w},\boldsymbol{\lambda}) = C(\tilde{\mathbf{y}}) \exp\left[-T(\tilde{\mathbf{y}},\mathbf{x};\mathbf{w}) - Q(\mathbf{x},\gamma;\boldsymbol{\lambda})\right] p(\gamma)$$
  
where  $C(\tilde{\mathbf{y}}) = p(\tilde{\mathbf{y}})^{-1} (2\pi)^{-M/2} \tau \gamma^{\frac{N}{2\kappa}}$ 

Then

- $p(\Theta \mid \tilde{y}) \ge L(\Theta \mid \tilde{y}; w, \lambda)$
- $\blacktriangleright \ \mathcal{KL}(q(\boldsymbol{\Theta}) \| p(\boldsymbol{\Theta} \mid \tilde{\mathbf{y}})) \leq \mathcal{KL}(q(\boldsymbol{\Theta}) \| L(\boldsymbol{\Theta} | \tilde{\mathbf{y}}; \mathbf{w}, \boldsymbol{\lambda}))$

| Introduction                    | Proposed method                      | Simulations     | Conclusion |
|---------------------------------|--------------------------------------|-----------------|------------|
| 0000                            | 00000000                             | 000             | 0          |
| Fast variational Bayesian signa | recovery in the presence of Poisson- | Gaussian Noise. | 10/17      |

To recap...

Let  $\Theta(\mathbf{x},\gamma)$ ,  $q(\Theta) = q(\mathbf{x})q(\gamma)$ 

**OPTIMIZATION PROBLEM:** 

$$q(\mathbf{\Theta}) = \underset{q}{\operatorname{argmin}} \mathcal{KL}(q(\mathbf{\Theta}) \| p(\mathbf{\Theta} \mid \tilde{\mathbf{y}})) \quad (1)$$

MAJORATION:  $\mathcal{KL}(q(\Theta) || \mathbf{p}(\Theta | \mathbf{\tilde{y}})) \leq \mathcal{KL}(q(\Theta) || L(\Theta | \mathbf{\tilde{y}}; \mathbf{w}, \lambda))$ Then Thus, Problem (1) can be solved by alternating the following steps:

- ► Mimimize  $\mathcal{KL}(q(\Theta) || L(\Theta | \tilde{\mathbf{y}}; \mathbf{w}, \lambda))$  w.r.t.  $q(\mathbf{x})$ ,
- ► Update the auxiliary variable w in order to minimize *KL*(q(Θ)||*L*(Θ|ỹ; w, λ)),
- ► Update the auxiliary variable λ in order to minimize KL(q(Θ)||L(Θ|ỹ; w, λ)),
- Mimimize the  $\mathcal{KL}(q(\Theta) \| L(\Theta | \tilde{\mathbf{y}}; \mathbf{w}, \lambda))$  w.r.t.  $q(\gamma)$ .

| Introduction                                                                         | Proposed method | Simulations | Conclusion |
|--------------------------------------------------------------------------------------|-----------------|-------------|------------|
| 0000                                                                                 | 00000000        | 000         | 0          |
| Fast variational Bayesian signal recovery in the presence of Poisson-Gaussian Noise. |                 |             | 11/17      |
|                                                                                      |                 |             |            |
|                                                                                      |                 |             |            |

# Updating $q(\mathbf{x})$

$$q^{k+1}(\mathbf{x}) \propto \exp\left(\left\langle \ln L(\mathbf{x}, \gamma, \mathbf{y}; \mathbf{w}^k, \boldsymbol{\lambda}^k) \right\rangle_{q^k(\gamma)}\right)$$
$$\propto \exp\left(\int \ln L(\mathbf{x}, \gamma, \mathbf{y}; \mathbf{w}^k, \boldsymbol{\lambda}^k) q^k(\gamma) d\gamma\right)$$
$$= \mathcal{N}(\mathbf{x}; \boldsymbol{m}_{k+1}, \boldsymbol{\Sigma}_{k+1})$$

$$\begin{cases} \boldsymbol{\Sigma}_{k+1}^{-1} &= \frac{1}{2} \delta^{-\frac{3}{2}} \boldsymbol{\mathsf{H}}^{\top} \operatorname{Diag}(\tilde{\boldsymbol{\mathsf{y}}}) \boldsymbol{\mathsf{H}} + 2 \boldsymbol{\mathsf{E}}_{q^{k}(\gamma)} \boldsymbol{\mathsf{D}}^{\top} \boldsymbol{\mathsf{\Lambda}}^{k} \boldsymbol{\mathsf{D}}, \\ \boldsymbol{\mathsf{m}}_{k+1} &= \boldsymbol{\mathsf{\Sigma}}_{k+1} \boldsymbol{\mathsf{H}}^{\top} \boldsymbol{\mathsf{u}}, \end{cases}$$
(1)

where

• 
$$\mathbf{u} = (u_i)_{1 \le i \le M}, \ u_i = \tilde{y}_i (w_i^k + \delta)^{-\frac{1}{2}} + \frac{1}{2} \tilde{y}_i \delta^{-\frac{3}{2}} w_i^k - 2$$

•  $\Lambda$  is the diagonal matrix whose diagonal elements are  $\left(\kappa(\lambda_j^k)^{\kappa-1}\mathbf{I}_S\right)_{1\leq j\leq Q}$ .

| Introduction              | Proposed method                              | Simulations    | Conclusion |
|---------------------------|----------------------------------------------|----------------|------------|
| 0000                      | 00000000                                     | 000            | 0          |
| Fast variational Bayesian | signal recovery in the presence of Poisson-G | aussian Noise. | 11/17      |

# Updating $q(\mathbf{x})$

$$q^{k+1}(\mathbf{x}) \propto \exp\left(\left\langle \ln L(\mathbf{x}, \gamma, \mathbf{y}; \mathbf{w}^k, \boldsymbol{\lambda}^k) \right\rangle_{q^k(\gamma)}\right)$$
$$\propto \exp\left(\int \ln L(\mathbf{x}, \gamma, \mathbf{y}; \mathbf{w}^k, \boldsymbol{\lambda}^k) q^k(\gamma) d\gamma\right)$$
$$= \mathcal{N}(\mathbf{x}; \boldsymbol{m}_{k+1}, \boldsymbol{\Sigma}_{k+1})$$

$$\begin{cases} \boldsymbol{\Sigma}_{k+1}^{-1} &= \frac{1}{2} \delta^{-\frac{3}{2}} \boldsymbol{\mathsf{H}}^{\top} \operatorname{Diag}(\tilde{\boldsymbol{y}}) \boldsymbol{\mathsf{H}} + 2 \boldsymbol{\mathsf{E}}_{q^{k}(\gamma)} \boldsymbol{\mathsf{D}}^{\top} \boldsymbol{\mathsf{\Lambda}}^{k} \boldsymbol{\mathsf{D}}, \\ \boldsymbol{m}_{k+1} &= \boldsymbol{\Sigma}_{k+1} \boldsymbol{\mathsf{H}}^{\top} \boldsymbol{\mathsf{u}}, \end{cases}$$
(1)

IMPLEMENTATION ISSUES:

- $\Sigma_{k+1}$  is approximated by a diagonal matrix
- $\boldsymbol{m}_{k+1}$  is approximated iteratively using conjugate gradient

| Introduction                        | Proposed method                    | Simulations      | Conclusion |
|-------------------------------------|------------------------------------|------------------|------------|
| 0000                                | 00000000                           | 000              | 0          |
| Fast variational Bayesian signal re | ecovery in the presence of Poisson | -Gaussian Noise. | 12/17      |
|                                     |                                    |                  |            |

## Updating w and $\lambda$

$$\boldsymbol{w}^{k+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \mathcal{KL}(q^{k+1}(\mathbf{x})q^{k}(\gamma) \| L(\boldsymbol{\Theta} | \tilde{\mathbf{y}}; \mathbf{w}^{k+1}, \boldsymbol{\lambda}))$$
$$= \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{M} T_{i}(\tilde{y}_{i}, [\mathbf{H}\boldsymbol{m}_{k+1}]_{i}; w_{i}),$$
$$= \max\{[\mathbf{H}\boldsymbol{m}_{k+1}]_{i}, 0\}$$

$$\begin{split} \lambda_j^{k+1} &= \underset{\lambda_j \in [0, +\infty)}{\operatorname{argmin}} \mathcal{KL}(q^{k+1}(\mathbf{x})q^k(\gamma) \| \mathcal{L}(\boldsymbol{\Theta} | \mathbf{\tilde{y}}; \mathbf{w}^{k+1}, \boldsymbol{\lambda})). \\ &= \mathsf{E}_{q^{k+1}(\mathbf{x})} \left[ \| \mathbf{D}_j \mathbf{x} \|^2 \right] \\ &= \| \mathbf{D}_j \mathbf{m}_{k+1} \|^2 + \operatorname{trace} \left[ \mathbf{D}_j^\top \mathbf{D}_j \mathbf{\Sigma}_{k+1} \right] \end{split}$$

| Introduction              | Proposed method                              | Simulations     | Conclusion |
|---------------------------|----------------------------------------------|-----------------|------------|
| 0000                      | 0000000                                      | 000             | 0          |
| Fast variational Bayesian | signal recovery in the presence of Poisson-O | Gaussian Noise. | 13/17      |
|                           |                                              |                 |            |

# Updating $q(\gamma)$

$$q^{k+1}(\gamma) \propto \exp\left(\left\langle \ln L(\mathbf{x}, \gamma, \mathbf{y}; \mathbf{w}^{k+1}, \boldsymbol{\lambda}^{k+1}) \right\rangle_{q^{k+1}(\mathbf{x})} \right)$$
$$\propto \exp\left(\int \ln L(\mathbf{x}, \gamma, \mathbf{y}; \mathbf{w}^{k+1}, \boldsymbol{\lambda}^{k+1}) q^{k+1}(\mathbf{x}) d\mathbf{x} \right)$$
$$= \mathcal{G}(\gamma; \mathbf{a}_{k+1}, \mathbf{b}_{k+1})$$
$$\left\{ \begin{array}{l} \mathbf{a}_{k+1} = \frac{N}{2\kappa} + \alpha = \mathbf{a}, \\ \mathbf{b}_{k+1} = \sum_{j=1}^{Q} (\lambda_j^{k+1})^{\kappa} + \beta, \end{array} \right.$$

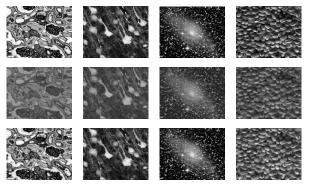
| Introduction                | Proposed method                             | Simulations     | Conclusion |
|-----------------------------|---------------------------------------------|-----------------|------------|
| 0000                        | 0000000                                     | •00             | 0          |
| Fast variational Bayesian s | signal recovery in the presence of Poisson- | Gaussian Noise. | 14/17      |
|                             |                                             |                 |            |
|                             |                                             |                 |            |

#### Experiments

- Different count levels x<sub>max</sub>
- Comparison with variationnal approaches:
  - different PG likelihood approximations: Generalized Anscombe Transform (GAST), the Exponential likelihood (Exp), the Exact likelehood (Exact)
  - different optimization algorithms: Spectral projected gradient [Bajic et al. 1994], Primal-dual splitting algorithm [Chouzenoux et al. 2015]

| Introduction              | Proposed method                             | Simulations     | Conclusion |
|---------------------------|---------------------------------------------|-----------------|------------|
| 0000                      | 0000000                                     | 000             | 0          |
| Fast variational Bayesian | signal recovery in the presence of Poisson- | Gaussian Noise. | 15/17      |
|                           |                                             |                 |            |
|                           |                                             |                 |            |

#### Visual results



From top to bottom: Original images:  $x_{max} = (20, 60, 100, 150)$ . Degraded images: SSIM=(0.232, 0.423, 0.561, 0.586). Restored images with the proposed approach: SSIM=(0.575, 0.653, 0.765, 0.830).

| Introduction                  | Proposed method                           | Simulations     | Conclusion |
|-------------------------------|-------------------------------------------|-----------------|------------|
| 0000                          | 0000000                                   | 000             | 0          |
| Fast variational Bayesian sig | nal recovery in the presence of Poisson-( | Gaussian Noise. | 16/17      |

#### Comparison with variational methods

|                                                  |           | MAP (GAST) [PG] | MAP (GAST) [PD] | MAP(EXP) [PD] | MAP (Exact)[PD] | BV (GAST) |
|--------------------------------------------------|-----------|-----------------|-----------------|---------------|-----------------|-----------|
|                                                  | $\gamma$  | fixed           | fixed           | fixed         | fixed           | automatic |
| First image (350 $\times$ 350): $x_{max} = 20$   | SNR       | 13.61           | 13.60           | 13.72         | 13.73           | 13.80     |
| h: Uniform 5 × 5, $\sigma^2 = 9$                 | Time (s.) | 2897            | 490             | 3124          | 48587           | 29        |
|                                                  | $\gamma$  | fixed           | fixed           | fixed         | fixed           | automatic |
| Second image (257 $\times$ 256): $x_{max} = 60$  | SNR       | 15.35           | 15.33           | 15.42         | 15.43           | 15.22     |
| h: Gaussian 9 × 9, std 0.5, $\sigma^2 = 36$      | Time (s.) | 3168            | 86              | 112           | 612             | 7         |
|                                                  | $\gamma$  | fixed           | fixed           | fixed         | fixed           | automatic |
| Third image (256 $\times$ 256): $x_{max} = 100$  | SNR       | 13.71           | 13.77           | 13.81         | 13.81           | 14.17     |
| h: Uniform $3 \times 3$ , $\sigma^2 = 36$        | Time (s.) | 2921            | 578             | 1060          | 17027           | 9         |
|                                                  | $\gamma$  | fixed           | fixed           | fixed         | fixed           | automatic |
| Fourth image (256 $\times$ 256): $x_{max} = 150$ | SNR       | 20.17           | 20.11           | 20.11         | 20.33           | 20.43     |
| h: Gaussian 7 × 7, std 1, $\sigma^2 = 40$        | Time (s.) | 2964            | 886             | 3026          | 43397           | 14        |

PG: projected gradient algorithm PD: primal dual algorithm Simulations performed on an Intel(R) Xeon(R) CPU E5-2630, @ 2.40 GHz, using a Matlab 7 implementation

- Comparable quantitative results with variational approaches
- Regularization parameter automatically tunned
- Competitive computation time

| Introduction              | Proposed method                             | Simulations     | Conclusion |
|---------------------------|---------------------------------------------|-----------------|------------|
| 0000                      | 0000000                                     | 000             | •          |
|                           |                                             |                 |            |
| Fast variational Bayesian | signal recovery in the presence of Poisson- | Gaussian Noise. | 17/17      |
| Fast variational Bayesian | signal recovery in the presence of Poisson- | Gaussian Noise. | 17/17      |

#### In a nutshell...

- ✓ Variational Bayesian method for restoration of images corrupted with mixed Poisson Gaussian noise
- → Compared to variational approaches, the proposed method shows:
  - $\checkmark$  good quantitative and qualitative results
  - $\checkmark~$  competitive computation time
- → Future work: extension to other PG likelihood approximations and others prior distributions