

SANDGLASSET: A LIGHT MULTI-GRANULARITY SELF-ATTENTIVE NETWORK FOR TIME-DOMAIN SPEECH SEPARATION

Tencent AI Lab

INTRODUCTION

- \bullet Speech separation is a fundamental component for many downstream speech processing tasks.
- Single-channel speech separation has recently been advanced by the time-domain audio separation networks (TasNets) (Luo and Mesgarani, 2018).
- \bullet State-of-the-art (SOTA) models both employ a dual-path technique, which is to process the segment sequence in an intra-segment (local) direction and an inter-segment (global) direction alternatively.
- In our previous work of GALR, we found that selfattentive networks (SANs) are superior over RNNs in modeling the inter-segment sequence.
- \bullet SAN can connect every element to another element with a direct path (i.e., in $\mathcal{O}(1)$ time), in contrast to $\mathcal{O}(N)$ time in RNNs.

MULTI-GRANULARITY

- Existing Method: Use a fixed segment size unchanged throughout all layers; The global contexts being learnt in the inter-segment sequence is limited to one manually defined scale.
- **Fact**: Speech signals contain different level of contexts, for example, the phoneme scale, the syllable scale, and the word scale, what we refer to as the multi-granularity.
- Our Observation: SANs have superior capabilities in modeling sequences of high-level contexts, as examined in LM and in NLP.
- Our Idea: Design a novel network that allows SANs to capture multi-granularity information for enhancing contextual modeling and computational efficiency.
- Our Proposed: Sandglasset, named for its sandglass shape and its modest model size and complexity.

Max W. Y. Lam*

Jun Wang*

* Tencent AI Lab, Shenzhen, China Tencent AI Lab, Bellevue WA, USA

SANDGLASSET BLOCK

- Sandglasset block: Each consists of these modules: 1) A local RNN; 2) A global SAN; 3) A downsampling and an upsampling modules for changing the context granularity. • For the b-th block, $\mathcal{X}_b \in \mathbb{R}^{D \times K \times S}$ is the block input enclosing S segments each containing K-length D-dimensional features.
- Mathematically, a Sandgla

glasset block computes the following:

$$\mathcal{Y}_{b}^{LR} = [\text{Linear} (\text{RNN}_{b} (\mathcal{X}_{b}[:,:,s])), s = 1, ..., S],$$

$$\mathcal{Y}_{b}^{GA} = \text{US}_{b} (\text{SAN}_{b} (\text{DS}_{b} (\text{LN} (\mathcal{Y}_{b}^{LR}) + \mathcal{X}_{b}))),$$

$$\text{SAN}(\mathcal{X}) = [\text{SelfAttn} (\text{LN} (\mathcal{X}[:,k,:]) + \mathbf{P}), k = 1, ..., K]$$

• The downsampling and upsampling operations are defined as

$$DS_{b}(\mathcal{X}) = \begin{cases} Conv1D_{K}(\mathcal{X}; 4^{b}) & \text{if} \quad b \leq N/2; \\ Conv1D_{K}(\mathcal{X}; 4^{N-b-1}) & \text{if} \quad b > N/2. \end{cases}$$
$$US_{b}(\mathcal{X}) = \begin{cases} ConvTrans1D_{K}(\mathcal{X}; 4^{b}) & \text{if} \quad b \leq N/2; \\ ConvTrans1D_{K}(\mathcal{X}; 4^{N-b-1}) & \text{if} \quad b > N/2, \end{cases}$$

where

 $\operatorname{Conv1D}_{K}(\mathcal{X};\tau) \in \mathbb{R}^{D \times \lceil K/\tau \rceil \times S}$ $\operatorname{ConvTrans1D}_{K}(\mathcal{X};\tau) \in \mathbb{R}^{D \times K\tau \times S}$

Dan Su*

Dong Yu[†]

i	f $b \leq$	N/2;	(Λ)
i	f $b >$	N/2.	(4)
١	if	h < M/2.	

1) Perfor
N BLS Cor E
Sandglass Sandg Sandgl
Sandglass Gated DP Wavesp
2) Perfor
M Conv DF Sandgla
Gated DPF Wavespl
3) Cost Δ
Model DPRNN Sandglasse
• This pape glasset fo
• Sandglass mechanis
granulari • As the
achieved mark data ory and c

(2)

(3)

(C)

(6)

RESULTS

rmances on WSJ0-2mix:

Model	Params.	SI-SNRi	SDRi
TM-TasNet	23.6M	13.2	13.6
nv-TasNet	$8.8\mathrm{M}$	15.3	15.6
DPRNN	$2.6\mathrm{M}$	18.8	19.1
DPTNet	$2.7\mathrm{M}$	20.2	20.6
set $(w/o RES)$	$2.3\mathrm{M}$	20.1	20.3
(SG)	$\mathbf{2.3M}$	20.3	20.5
lasset (MG)	$\mathbf{2.3M}$	20.8	21.0
et (MG) + PT	$\mathbf{2.3M}$	21.0	21.2
PRNN + Spk ID	7.5M	20.1	_
plit + Spk ID	$^{\dagger}42.5 M$	21.0	21.2

rmance on WSJ0-3mix:

Iodel	Params.	SI-SNRi	\mathbf{SDRi}
v-TasNet	8.8M	12.7	13.1
PRNN	$2.6\mathrm{M}$	14.7	_
asset (MG)	$2.3\mathrm{M}$	17.1	17.4
RNN + Spk ID	$7.5\mathrm{M}$	16.7	_
it + Spk ID	$^{\dagger}42.5M$	17.3	17.6

Analysis:

	Params.	$\mathbf{Memory} \ (\mathrm{GB})$	GFLOPs (10^9)
	2.6M	1.97	84.7
\mathbf{et}	$2.3\mathrm{M}$	$0.82~(\downarrow 58.4\%)$	$28.8~(\downarrow 66.0\%)$

CONCLUSIONS

er proposes a novel network named Sandor time-domain speech separation.

sset applies a downsampling-upsampling sm to the global SAN for modeling multiity contexts.

smallest TasNet in size, Sandglasset the state-of-the-art results on two benchasets and is also low-cost in terms of memcomputations.