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ABSTRACT

We present a method to transform artificial notification sounds into
various musical timbres. To tackle the issues of ambiguous timbre
definition, the lack of paired notification-music sample sets, and the
lack of sufficient training data of notifications, we adapt the prob-
lem for a cycle-consistent generative adversarial network and train
it with unpaired samples from the source and the target domains.
In addition, instead of training the network with notification sound
samples, we train it with video game music samples that share sim-
ilar timbral features. Through a number of experiments, we discuss
the efficacy of the model in transferring the timbre of monophonic
and even homophonic notifications while preserving their original
melody envelopes. We envision notification timbre transfer as a way
of less distracting information delivery, and we demonstrate example
music pieces augmented with notifications after timbre transfer.

Index Terms— Audio style transfer, musical timbre transfer,
sound notification, human-machine interface

1. INTRODUCTION

Audio style transfer techniques have been developed to change the
style of human voice [1, 2] and music [3]. Regarding music, style
could refer to instrument timbre [4, 5], music genre [6, 7], a global
musical structure [8], etc. Typical audio style transfer techniques in-
clude convolutional neural network (CNN)-based models [3, 9, 10],
(variational) autoencoders [11, 12, 13], generative adversarial net-
work (GAN)-based models [4, 6, 14], etc. Among different types of
music style transfer, timbre transfer has been a popular topic [4, 5,
12], and is also the focus of this work.

To the best of our knowledge, no related work has focused on
notification sounds so far. We define notification sounds as the short
musical sequences commonly used in digital smart assistant devices
and popular applications to remind the user of new information ar-
rival. Notification sounds usually have a short duration (around 1 s−
15 s). Many of them are monophonic with several notes or a simple
melody, while some are homophonic musical pieces.

Our goal is to change the style of notification sounds. More pre-
cisely, we aim to change the musical timbre of notifications while
preserving their original melody envelope. We envision a potential
application of notification timbre transfer as a way of less distract-
ing information delivery. Notifications have been shown as a source
of stress and distraction that affects people’s task performance [15],
but disabling them is not a satisfying solution either, since this might
make users unaware of their activity context [16]. Since digital mu-
sic has been widespread, researchers have explored to deliver noti-
fications in a less pronounced way by modifying the music that a
user is listening to. For example, adding acoustic effects like re-
verb to the music [17], or slightly modifying the notes and rhythm
of the music [18]. Timbre transfer might indicate a new perspective

to this issue. While preserving the melody envelope still associates
a notification with its interpretation, it might help to alleviate dis-
traction by harmoniously embedding the notification into the music,
after changing the notification into the timbre of the music.

We see two main challenges that differentiate the timbre transfer
of notifications from general audio style transfer. First, unlike music
played with specific instrument(s), it is difficult to define the timbre
of notifications since they could be generated in several ways (real
instruments, electronically synthesized, etc.). Among the commonly
used notifications that we collected from iOS, Android, and popular
applications like Skype, except those that either have a clear instru-
mental timbre or barely have a musical structure (e.g. frog croak),
the majority tends to have a timbre of, or a timbre similar to, elec-
tronically synthesized tones. We focus on these notifications in this
work. The second challenge is the insufficient amount of training
data of such notifications in general, and a complete lack of pairs
of notifications and corresponding music sequences, which largely
limits the set of applicable conversion methods.

This paper contributes one of the first explorations on musical
timbre transfer for artificial notification sounds. We address the
above challenges by developing a timbre transfer model based on the
cycle-consistent generative adversarial network (CycleGAN) [19],
which was initially proposed for image style transfer, but can be
trained with unpaired sample sets in general. We observed that a
large portion of video game music (e.g. Super Mario) shares similar
timbral features with notifications. We thus collected video game
music to train the transfer model for notifications. The paper also
presents an extensive discussion on the efficacy, potential, and limi-
tations of our model, supported by quantitative and qualitative eval-
uations and a user perception study. We further present example
music pieces to demonstrate our idea of less distracting information
delivery with timbre-transformed notifications.

2. TIMBRE TRANSFER METHOD FOR NOTIFICATIONS

We developed our method based on the CycleGAN [19] structure,
which has shown high-quality performance in image [19] and au-
dio [4, 20] style transfer with unpaired training data. For training
a style transfer model, raw audio data is typically represented us-
ing short-time Fourier transform (STFT) [3], Mel-spectrogram [14],
constant-Q transform (CQT) [4], or a combination of these repre-
sentations [10]. Considering the human auditory perception on a
logarithmic frequency scale and the convenience of converting the
spectrogram back to the waveform for playback, we used the Mel-
spectrograms for training the model.

Fig. 1 shows our timbre transfer pipeline. The original notifica-
tion sound wave is transformed into its Mel-spectrogram and input
to a CycleGAN generator, which generates a new Mel-spectrogram
in the target timbre. The output spectrogram is converted back to
the time domain by applying e.g. the Griffin-Lim algorithm [21] or



the gradient-based inversion algorithm [22], which can reconstruct
the phase of the sound wave reasonably well. In the following, we
introduce the design of the CycleGAN model and the mechanism to
train the model for notifications of arbitrary length.
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Fig. 1. The pipeline of notification timbre transfer.

2.1. CycleGAN Model

With X being the source audio domain and Y being the target audio
domain, a CycleGAN model consists of two generatorsG : X → Y
and F : Y → X , which in our case have a U-Net [23] architecture,
and two discriminators DX and DY , which in our case are convolu-
tional PatchGAN discriminators [24]. These generators and discrim-
inators were shown to be adequate for audio style transfer [14]. The
generators include three downsampling and three upsampling layers
with 2D convolutions with stride 2. Leaky ReLU activations are used
in all 2D convolutions except in the last transposed 2D convolution
layer that uses tanh activation. For both downsampling and upsam-
pling phases, we set the receptive field to cover the entire frequency
domain to capture the whole spectra of the input audio. The dis-
criminators consist of three downsampling layers with leaky ReLU
activation and a final dense layer. We apply spectral normalization
to each convolutional filter of the generators and discriminators to
improve the training stability as inspired by [25, 26].

2.2. Training Objectives

The training objective of the CycleGAN model is that G generates
samples that DY cannot distinguish from real, while F generates
samples that DX cannot distinguish from real, such that any XY X̂
and Y XŶ cycle gives a sample closest to the original. Formally:

L(G,F,DX , DY ) = LGAN (G,DY ) + LGAN (F,DX)+

λcycleLcycle(G,F ) + λidLid(G,F )
(1)

This objective consists of two GAN adversarial lossesLGAN (G,DY )
and LGAN (F,DX), a cycle consistency loss Lcycle(G,F ), and an
identity lossLid(G,F ). The GAN adversarial lossesLGAN (G,D) =
LGAN,G(G,D) +LGAN,D(G,D) consist of the following genera-
tor and discriminator objectives:

LGAN,G(G,D) = −Ex∼pdata(x)[D(G(x))] (2)

LGAN,D(G,D) = −Ex∼pdata(x)[min(0,−1−D(G(x)))]

−Ey∼pdata(y)[min(0,−1 +D(y)]
(3)

The cycle consistency loss is formulated as

Lcycle(G,F ) = Ex∼pdata(x)[‖F (G(x))− x‖1]+
Ey∼pdata(y)[‖G(F (y))− y‖1]

(4)

and we included the identity loss

Lid(G,F ) = Ex∼pdata(x)[‖G(x)− x‖1]+
Ey∼pdata(y)[‖F (y)− y‖1]

(5)

By tuning the weights of the cycle consistency loss and the iden-
tity loss, we aim to keep a good balance between the melody preser-
vation and timbre modification. We included two more techniques to
improve the training stability. First, we updated the generator more
often than the discriminator since the discriminator normally learns
faster [27]. Our experiments showed that three generator updates per
discriminator update worked well in our case. Second, we updated
the discriminator using a random selection of 50 generated spectro-
grams from the history buffer, since using only the latest data might
cause divergence of the adversarial training [28].

2.3. Training for Notifications of Arbitrary Lengths

In order to process notification sounds of arbitrary lengths, follow-
ing [14], we implemented a splitting-and-concatenation mechanism
when training and applying the CycleGAN model. The key idea is
to train the generator to create a complete spectrogram from split-up
chunks. Suppose that the spectrogram has a size of F × T , where
F is the number of Mel frequency channels and T is the time length
that varies from sample to sample. During the training process, the
spectrograms of training data are split into chunks with a determined
width L1 < T for all T in the source and the target domain. The
split chunks are fed into the generators, from which the outputs are
concatenated and fed to the discriminator. The discriminator then
compares the concatenated spectrograms with the real spectrograms.
This trains the generator to be able to produce chunks that result in
realistic spectrograms when concatenated together. After the train-
ing, given a notification, its input spectrogram is split into chunks of
length L2 to infer the output, where L2 can be different from L1.

3. EXPERIMENTS

We evaluate the performance of the model in changing the notifi-
cation timbre while preserving the original melody envelope. The
following experiment focuses on the transfer to the timbre of piano,
but we also discuss the potential and limitations of our model based
on the experiments on several other target timbres. As a reference,
related audio examples can be found in the supplement1.

3.1. Training Data Collection

We collected around 1.5 hours of video game music from YouTube
to train the transfer model for notifications. Music of target instru-
mental timbres was collected from the MusicNet dataset [29] and
YouTube. We collected 65 notification sounds from iOS/Android
and popular applications. Lengths of these notifications range from
1 to 15 seconds. All collected data was preprocessed into WAV for-
mat with a sampling rate of 16 kHz.

Video game music was selected to train the model since it shares
similar timbral features with notification sounds, and there exists
plenty of video game music freely available. To prove the timbral
similarity, we extracted 128-dimensional VGGish feature vectors
(that are suitable for recognizing different musical instruments and
soundtracks [30, 31]) from notifications, from video game music,
and from other music of 11 styles. Next, we visualized the fea-
ture vectors in 2D space using the popular t-SNE [32] algorithm.
Fig. 2 shows how the VGGish feature vectors of the same timbre
are clustered together, and how the similar timbres share some over-
lap, e.g. between classical music (light pink) and string quartet mu-
sic (brown). As highlighted in the figure, most notification sounds

1Supplementary materials: https://gladys0313.github.io/
notification-timbre-transfer/

https://gladys0313.github.io/notification-timbre-transfer/
https://gladys0313.github.io/notification-timbre-transfer/


(cyan) overlap the video game music (olive), and both of them are
generally separated from the other styles. This indicates their tim-
bral similarity and hence the rationality of training a timbre transfer
model for notification sounds using the video game music as the
source data. We have also explored the use of electronic music as
the source domain since we assumed some timbral similarity be-
tween the electronic music and the notifications, but it turned out to
be an inferior choice (see supplement1).

Fig. 2. Clusters of musical timbres based on extracted VGGish fea-
ture vectors. Notifications and video game music overlap.

3.2. Implementation

To train our timbre transfer model, we randomly extracted 1200
pieces of 30 s audio clips from the video game music dataset and
the target style music dataset, respectively. The model was trained
using Adam optimizer, a learning rate of 2 × 10−4, and batch size
16. For the training objective, we chose parameters λcycle = 1 and
λid = 6. Regarding the splitting-and-concatenation (see Sec. 2.3),
we used a chunk size of 3.84 s during the training process, given
the same length of 30 s for all training data. After training, we
used a chunk size of 0.384 s for transferring notification sounds.
The Mel-spectrograms were calculated with hop size = 192 and
window size = 6 × hop size. The network was implemented us-
ing the TensorFlow library. Each model was trained for one target
timbre on a Tesla V100 GPU for around 6 days.

3.3. Performance Evaluation

We show the model performance on notification timbre transfer into
the piano style, and present samples including other timbres in the
supplement1. Remember that our goal is to change the notification
timbre but preserve the original melody envelope.

3.3.1. Timbre

We plot the VGGish feature vectors of the original notifications, the
transferred notifications, and the piano music in Fig. 3a. It shows
that most original notifications are clustered at the top right corner,
and they are the majority group that overlaps the video game music.
However, some original notifications are scattered around and a few
are already similar to piano music. With this distribution, we antic-
ipate that the transfer of some notifications could be difficult. Still,
we can see that the transferred notifications are overall more similar
to the piano music than the original ones.

original 
notifications

transferred 
notifications

piano

a. all notifications b. 10 selected notifications 
for the user study

Fig. 3. Clusters of original notifications, transferred notifications,
and piano music. The cluster distribution shows that the transferred
notifications are in general more similar to piano music. Note: one
dot represents a vector extracted from a 1 s segment of the music.

3.3.2. Melody

Melody is regarded as a combination of pitch and rhythm. There ex-
ist numerical evaluation methods of these two properties. Note that
for the pitch sequence, rather than the absolute values of each note,
we concern the overall envelope and the corresponding perception.
This is motivated by the fact that the notification sounds and the tar-
get instrument have mismatching ranges of fundamental frequencies
and overtones. For example, a piano has a fundamental frequency
range from 27.5Hz to 4186Hz, but some notification sounds (and
video game music) have high-energy pitches up to around 8 kHz
(e.g., Fig. 4a). For such notifications, our model is able to lower
the tune (e.g., Fig. 4b) and render the overall tonal color as the target
timbre. Therefore, the absolute pitch sequence of the output notifica-
tion could be rather different from the original one, but their overall
envelopes might sound similar.

a. notification: original b. notification: after the transfer

Fig. 4. Comparison of the Mel-spectrograms of the original notifi-
cation (a) and its timbre-transferred version (b). Our model is able
to adjust the pitches and render the overall tonal color of the original
melody to match the target instrument.

We compared the original and the transferred notifications by
calculating the pitch (envelope) similarity score [33] and the rhythm
similarity score [9], both ranging from 0 (different) to 1 (identical).
On average, the pitch similarity score was 0.458 (±0.014) and the
rhythm similarity score was 0.357 (±0.038). This indicates that our
model is able to preserve the original melody (envelope) to some
extent but probably with noticeable defects.

Although numerical evaluations are objective and unresponsive
to individual perception difference, a common problem is that the
formulations of the metrics include less perceptually-relevant fea-
tures (e.g. STFT that is on linear instead of logarithmic frequency
scale), so the similarity scores might not perfectly reflect people’s
real auditory perception. We thus conducted a user study to explore
normal people’s perception of the notifications. In order to control



the study time to avoid fatigue, we randomly selected 10 notifica-
tions (see Fig. 3b) for the study. As references for the timbre and the
melody, we provided piano samples and the original notifications.

We collected the mean opinion score (MOS) of 53 participants
(33 males, 20 females, age = 28.13) on two questions: (1) How well
does the timbre of the test sample sound like piano? (2) How well
does the melody of the test sample match the original notification
melody? We used the typical 5-point MOS ranging from 1-bad (very
different) to 5-excellent (imperceptible difference), with the neutral
score 3-fair meaning “perceptible difference but acceptable”.

The average timbre score was 3.345 (±0.861), indicating an
overall acceptable transfer to the piano timbre but with big variation
among samples. The less efficacy of the model on several notifica-
tions could be because the original timbre of these notifications was
a bit different from the training data. Besides, even if the pitches of a
notification have been adjusted to match the fundamental frequency
range of the target instrument, the overtone pattern that is closely
related to the timbre perception could still be difficult to learn.

The average melody score was 3.720 (±0.261), close to the
MOS score 4-good (slightly perceptible difference, can be recog-
nized as the same notification melody). Some participants recog-
nized the pitch shift but they still gave a high score because the over-
all melody sounded to match the original one. However, some par-
ticipants perceived notes that were not perceived in the original no-
tification. Some such notes still fit the overall sequence while some
caused slight discord. In general, the MOS scores and the feedback
indicate an overall satisfying performance of our model in preserv-
ing the notification melody envelope after changing the timbre.

3.4. Discussion

Based on our experiments with a number of target timbres, in the
following we discuss the limitations, advantages, and potential ap-
plications of our model.

First, although most of the collected video game music and noti-
fication sounds share considerable similarity, some samples are scat-
tered away from the major cluster. Consequently, a trained model
has limited performance in transferring these notifications into the
target timbre. In addition, we need to re-train the model for each
new target timbre, so the model is not able to live adapt to a new
style at runtime, which would be desirable in some applications.

Second, most of the collected video game music and notifica-
tions have a single-instrument timbre, and most notifications are
monophonic. Compared to the transfer to a single-instrument tim-
bre (e.g. piano, cello), it is difficult to train a model that maps a
monophonic notification to a homophonic or even polyphonic mu-
sic piece with several timbre tracks, e.g. piano-accompanied violin.
The original melody (envelope) can be kept to a good extent, but the
timbre of the output notification is often unconvincing. In the case of
piano-accompanied violin, perceptual evaluation showed that some
output notifications sounded more similar to violin or piano, while
most output notifications had an unnatural mixed timbre of these two
instruments (also see Fig. 5).

An advantage of our method is its short runtime. Taking a 2.5 s
notification as example, the whole pipeline in Fig. 1 takes around 3 s.
Generating the output Mel-spectrogram from the input audio wave
takes around 10ms on a Tesla V100 GPU, or 50ms on a 2.3GHz
quad-core Xeon CPU, while the rest of the time is spent on recon-
structing the audio wave from its Mel-spectrogram. A delay of sec-
onds might be acceptable for delivering a notification, since in most
cases notifications do not require an urgent response.

original 
notifications

transferred 
notifications

piano-accompanied 
violin

Fig. 5. Notification timbre transfer to a multi-instrument style,
piano-accompanied violin. Two blue sub-clusters stand for piano
and violin, respectively. Most output notifications have an unnatural
mixed timbre of these two instruments.

4. NOTIFICATION TIMBRE TRANSFER FOR GENTLE
INFORMATION DELIVERY

A potential application of notification timbre transfer might be less
distracting information delivery. Related work [17, 18] focused on
delivering notifications in a gentle way by adding acoustic effects or
slightly modifying the notes and the rhythm of the music that a user
is listening to. This concept of embedding notification into music
might also be achieved with the notification timbre transfer tech-
nique. We could first change the timbre of the notification to match
the music being played, then embed the timbre-transferred notifica-
tion into the music track, so to deliver notifications in a less intrusive
manner. To demonstrate this concept and to achieve seamless mu-
sic augmentation, we propose an embedding approach including the
following steps: (1) Scale the amplitude of the notification sound to
match the amplitude of the music; (2) Adjust the speed of the notifi-
cation to match the tempo of the music; (3) Integrate the notification
into the music with a fade-in and fade-out effect. While a thorough
exploration of the user experience with this kind of notification deliv-
ery is out of the scope of this paper, we expect adequate usability and
acceptance of our approach with reference to the related work [18].
We provide corresponding audio samples in the supplement1.

5. CONCLUSIONS AND FUTURE WORK

We proposed a CycleGAN-based pipeline and trained it in an unsu-
pervised manner with unpaired audio samples to change the timbre
of artificial notification sounds. We found that video game music
could be used as the source domain for training the model for noti-
fications, to overcome the issues of insufficient training samples and
the ambiguous timbre of notifications. We implemented a splitting-
and-concatenation method in the model to handle notification sounds
of arbitrary lengths. We demonstrated the efficacy and discussed the
limitations of our model in changing the notification timbre while
preserving the original melody envelope.

Our future work will focus on more complex notification timbre
transfer. We are especially interested to explore the challenging task
of transferring the single-timbre and monophonic notifications to a
style that contains several timbre tracks in a homophonic or poly-
phonic piece. As we envision applications in less distracting infor-
mation delivery, we will also conduct studies exploring the usability
of various music blending approaches. As one of the first explo-
rations in the field of notification timbre transfer, we hope to inspire
future research in this area and its applications in multimedia and
human-computer interfaces.
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