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1. Motivation
MR image quality evaluation is mainly performed by human observers
(HO) to determine the underlying image quality with respect to a certain
diagnostic question. HO evaluations are time-demanding and expensive.
Furthermore, the lack of a reference image makes this task challenging.
In order to support the HO and automize this process, we extend our pre-
vious no-reference MR image quality assessment system [1,2] which is
based on a machine-learning model observer with an active learning (AL)
loop to reduce the amount of needed labeled training data.

2. MR image quality assessment system

The proposed system including the active learning loop is shown in Fig. 1.
3D and 2D multislice MR images are considered as input.

Figure 1: Proposed automatic MR image quality assessment including active learning.

MR database: The database consists of 100 3D images (=2911 2D image
slices) from 35 patients of different body regions and imaging sequences.
Labeling: The database is split into 2038 randomly selected 2D image
slices/samples for the training set Dtrain and 873 samples for the test set
Dtest. From Dtrain, randomly drawn samples are assigned to the initial train-
ing set DI for active learning. All images are blindfolded labeled by experi-
enced radiologists on a 5-point Likert scale, yielding 5 quality classes.
Segmentation: A Chan-Vese segmentation is applied to devide fore-
ground from irrelevant background information.
Feature Extraction: Characteristics such as smoothness, coarseness,
regularity, brightness, homogeneity, etc. are applicable interpretations
of an MR image, helping to reflect the HO’s visual perception. Thus,
the MR image is represented by extracted texture-based, intensity-based,
gradient-based and fractal-based features, yielding 2871 features.
Feature Reduction: A Principal Component Analysis reduces the dimen-
sion of the feature space, yielding a feature vector x ∈ CP , P = 36.
Classification: Class assignment to class k ∈ {1, . . . , 5} is accomplished
by a soft margin multi-class support vector machine using an one-against-
one approach with radial basis function kernel and 10-fold cross validation.

3. Active Learning
The amount of needed labels can be reduced by selecting the most mean-
ingful ones, without redundant information for classification. We imple-
mented two query strategies based on pool-based uncertainty sampling
[3], i.e. on how certain the classifier is in his decision. For
D training data ND = |D| number of training samples
DI initial training set NI = |DI| number of initial training samples
L query set NL = |L| number of samples per query
the goal is to keep ND as small as possible with an initial training of DI. In
each of the Nq AL loops the HO is queried to label NL samples from the
query set L. Furthermore, since HOs label 3D images, but the sample
selection takes place on 2D slices, the selection prioritizes samples be-
longing to the same 3D image.
3.1 probability-based selection

Probability estimates for multi-class SVM derived from pairwise coupling
as described in [4] are selected to minimize the difference between the
probabilities Pk(xn) and Pl(xn) of the 1st and 2nd most probable class [5].

L =

NL⋃
n=1

{xn|min
n

(Pk(xn)− Pl(xn))}. (1)

3.2 distance-based selection
Uncertainty of a sample to belong to class yi ∈ {1, . . . , 5} is determined by
the distance d(xn) of one feature vector xn to the hyperplane f (xn). The to
be labeled set is thus composed by

L = {xn|d(xn) < d(xm) ∀ xn ∈ yk} \ (O ∪ S) (2)

with the ascending distances and O denoting a set of outliers and a group
S considering the slack variables (Fig. 2). Distances are determined by

d(xn) = ‖w‖−12 f (xn) = ‖w‖−12

NSV∑
i=1

αiyik(xn, xi) + b (3)

where w and b denote the primal parameters learned by the SVM with an
RBF kernel k(xn, x) and dual coefficients αi of NSV support vectors (SV).

Outlier correction O: Reject samples via
distance di(xn, µi) = ‖xn−µi‖ to the class
center µ

i
of class yi

O ={xn|di(xn, µi)− di(xm, µi) > ε

∧ di(xm, µi) < di(xn, µi)

∀ xn ∈ yi, xm 6= xn} (4)

Slack variable correcton S: Discard sam-
ples with minimum distance δ to the hy-
perplane

S = {xn|d(xn) < δ} (5) x1

x 2

µ1

µ2
δ {

class 1 class 2 xn ∈O xn ∈S

SVs hyperplane margin

Figure 2: Exemplary 2D feature space
to illustrate sample selection.

4. Material and Methods
As reported in [1], the system is able to achieve an overall test accuracy
of 91.2% with the whole training set ND = 2038. The aim of this study is to
reduce the labeling cost, i.e. ND = NI+Nq ·NL with Nq queries, while main-
taining accuracy. Results are presented as mean of ten different runs.

5. Results
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(a) probability-based approach

200 600 1000 1400 1800
50
55
60
65
70
75
80
85
90
95

ND [samples]

A
cc

ur
ac

y
[%

]

NI = 50, Nq = 49
NI = 200, Nq = 45
NI = 500, Nq = 38

(b) margin-based approach
Figure 4: Test accuracy for initial training set sizes NI with NL = 40 samples per query.
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(b) margin-based approach
Figure 5: Test accuracy for NL samples per query with initial training size NI = 200.

6. Conclusion and Outlook
On in-vivo MR data both strategies reveal that training data can be re-
duced by roughly 50% while achieving comparable classification results to
the previous system. Furthermore by selecting only the most meaningful
2D slices belonging to a few significant 3D images, the labeling effort is
reduced tremendously.
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