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Introduction

I Multi-user multiple-input single-output (MU-MISO) interference downlink channel

I Single base station with M transmit antennas, N single-antenna users
I Linear beamforming

user j

user i

Goals

1. Maximize weighted sum rate subject to
transmit power constraint

2. Satisfy the power consumption and
latency requirements at the base station

Received signal

yi = hH
i v ixi +

∑N
j=1,j 6=i h

H
i v jxj + ni

hi ∈ CM : channel

v i ∈ CM : beamformer vector

xi ∼ CN (0, 1): transmitted symbol

ni ∼ CN (0, σ2): noise

V , [v1, v2, . . . , vN ]T ∈ CN×M

Beamformer matrix
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Beamforming problem

I We address the weighted sum rate (WSR) maximization problem

max
V

N∑
i=1

αi log2 (1 + SINRi ) (1a)

s.t. Tr(VVH) ≤ P (1b)

– log2 (1 + SINRi ) is the rate of user i

– SINRi =
|hH

i v i |2∑N
j=1,j 6=i |h

H
i v j |2+σ2 (signal-to-interference-plus-noise ratio of user i)

– αi is the priority of user i (assumed to be known)

I Problem (1) is known to be NP-hard1

1Luo et al., ”Dynamic spectrum management: Complexity and duality,”IEEE Journal of Selected
Topics in Signal Processing, 2008.
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WMMSE algorithm

I The weighted minimum mean square error (WMMSE) algorithm2 finds a local
optimum by working on an equivalent reformulation of the WSR problem, i.e.,

min
u,w ,V

f (u,w ,V ) (2a)

s.t. Tr(VVH) ≤ P (2b)

I At each iteration of the WMMSE:

– the update of u is the optimal solution of minξ f (ξ,w ,V )
– the update of w is the optimal solution of minξ f (u, ξ,V )

– the update of V is the optimal solution of minξ f (u,w , ξ) s.t. Tr(ξξH) ≤ P

I It is guaranteed to converge to a local optimum

I It exhibits a relatively high computational complexity

2Shi et al.,”An iteratively weighted MMSE approach to distributed sum-utility maximization for a
MIMO interfering broadcast channel,”IEEE Transaction on Signal Processing, 2011.
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Deep unfolding

I It is a learning technique applicable to iterative algorithms

I Goal: trade off complexity and performance in presence of constraints
I Key idea: build and train a neural network whose structure is determined by the

iterative algorithm

– Map each iteration of the algorithm to a neural network layer
– Fix the number of layers of the network according to the complexity and latency

constraints
– Select the trainable parameters
– Train the network with gradient-based methods and back-propagation

I It incorporates domain knowledge in the structure of the network
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Deep unfolding

Advantages with respect to standard neural network solutions

I No architecture selection

I Explainability

I Fewer parameters to train
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WMMSE algorithm - Deep unfolding

I The WMMSE algorithm involves operations that are hard to map to neural
network layers as acknowledged by Sun et al.3

WMMSE steps Unfolded steps

u j = argminξ f (ξ,w j−1,V j−1) u j = Ω(w j−1,V j−1)

w j = argminξ f (u j , ξ,V j−1) w j = Ψ(u j ,V j−1)

V j = argminξ f (u j ,w j , ξ) s.t. Tr(ξξH) ≤ P ?

j is the iteration index

3Sun et al., ”Learning to Optimize: Training Deep Neural Networks for Interference Management,”
IEEE Transactions on Signal Processing, 2018
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WMMSE algorithm - Deep unfolding

I The update equation of V is obtained by solving

min
ξ

f (u,w , ξ) (3a)

s.t. Tr(ξξH) ≤ P, (3b)

with the method of Lagrange multipliers

I It leads to a matrix inversion, an eigendecomposition, and a bisection search
I We observe that

– The cost function is convex
– The constraint set is convex

I We propose to solve (3) with the projected gradient descent (PGD) approach

I We truncate the sequence of PGD steps to K
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Unfoldable WMMSE algorithm

I At each iteration:

– the update of u is the optimal solution of minξ f (ξ,w ,V )
– the update of w is the optimal solution of minξ f (u, ξ,V )
– the update of V is given by K PGD steps

Convergence

We can prove that the unfoldable WMMSE algorithm retains
the same convergence guarantees of the original WMMSE
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Deep unfolded WMMSE
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k th PGD step
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L

∇ × + ΠC

k th PGD step

I We select the step sizes of the PGD (Γ) to be the trainable parameters
I We minimize the following loss function

L(Γ) = − 1

Ns

Ns∑
n=1

L∑
l=1

fWSR(Hn,V l ; Γ) (4)

where Ns is the size of the training set Weighted Sum Rate

——–↖
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Numerical results
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Conclusion

I We addressed the trade-off between complexity and performance for the
WSR maximization beamforming problem

I To this end, we provided a variant of the WMMSE algorithm that

– allows for the novel application of deep unfolding
– retains the same convergence guarantees of the original WMMSE algorithm

I Numerical results confirmed that the deep unfolded WMMSE successfully
addresses the trade-off
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Thank you for your attention!

https://github.com/lpkg/ WMMSE-deep-unfolding/tree/ICASSP2021

You can reach out to me at pellaco@kth.se
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