

PROBABILISTIC GRAPH NEURAL NETWORKS FOR TRAFFIC SIGNAL CONTROL

Authors: Ting Zhong, Zheyang Xu, Fan Zhou

University of Electronic Science and Technology of China, China

Sichuan Innovation Base for AI Industry-Education Integration

Presenter: Zheyang Xu

Introduction

- Background
- Existing Methods
- Challenges
- Our model: TSC-GNN

Problem Definition

• Reinforcement Learning for Traffic Signal Control $\langle S, O, A, P, R, \pi, \gamma \rangle$

Our model: TSC-GNN

- Cooperation of traffic signals
- Variational Graph Inference
- Q-value Prediction

Experiments

• Datasets

(a) Gudang sub-district (b) I

(b) Dongfeng sub-district

Experiments

- Baselines
 - 1) FixedTime 2) MaxPressure
 - 3) CGRL 4) Individual RL
 - 5) OneModel 6) Neighbor RL
 - 7) GCN 8) CoLight

Experiments

Results

Model	D_{Jinan}	$D_{ m Hangzhou}$
Fixedtime	869.85	728.79
MaxPressure	361.33	422.15
CGLR	1210.7	1528.26
Individual RL	325.56	345.00
OneModel	728.63	394.56
Neighbor RL	1168.32	1053.45
GCN	625.66	768.43
CoLight	316.52	309.06
TSC-GNN	291.24	281.19

PROBABILISTIC GRAPH NEURAL NETWORKS FOR TRAFFIC SIGNAL CONTROL

Presenter: Zheyang Xu

Thank you for listening!