Efficient Real-time Video Stabilization with A Novel Least Squares Formulation

Jianwei Ke Alex J Watras Jae-Jun Kim Hewei Liu Hongrui Jiang Yu Hen Hu

Department of Electrical and Computer Engineering University of Wisconsin-Madison

ICASSP, June 2021

ICASSP 2021

1/16

Jianwei Ke (UW-Madison)

 Most existing video stabilization methods are offline. However, there is an increasing demand (robotics, drone, etc.) of real-time online methods.

2/16

- Most existing video stabilization methods are offline. However, there is an increasing demand (robotics, drone, etc.) of real-time online methods.
- Some real-time stabilization methods have high latency as they require future frames for path planning.

ICASSP 2021

- Most existing video stabilization methods are offline. However, there is an increasing demand (robotics, drone, etc.) of real-time online methods.
- Some real-time stabilization methods have high latency as they require future frames for path planning.
- Other real-time methods rely heavily on Kalman filter where the covariance matrix and the state transfer matrix must be assumed.

ICASSP 2021

- Most existing video stabilization methods are offline. However, there is an increasing demand (robotics, drone, etc.) of real-time online methods.
- Some real-time stabilization methods have high latency as they require future frames for path planning.
- Other real-time methods rely heavily on Kalman filter where the covariance matrix and the state transfer matrix must be assumed.
- We present a simple and efficient real-time online video stabilization algorithm(LSstab) with minimum latency.

ICASSP 2021

- Most existing video stabilization methods are offline. However, there is an increasing demand (robotics, drone, etc.) of real-time online methods.
- Some real-time stabilization methods have high latency as they require future frames for path planning.
- Other real-time methods rely heavily on Kalman filter where the covariance matrix and the state transfer matrix must be assumed.
- We present a simple and efficient real-time online video stabilization algorithm(LSstab) with minimum latency.
- LSstab is based on a novel Least squared formulation of the smoothing cost function. A recursive solver is derived for optimizing the cost function.

2/16

Algorithm Flowchart

Jianwei Ke (UW-Madison)

ICASSP 2021 3/16

• Assume the inter-frame motion model is the simplified affine transformation $A = \begin{bmatrix} s \cdot \cos(\theta) & -s \cdot \sin(\theta) & t_x \\ s \cdot \sin(\theta) & s \cdot \cos(\theta) & t_y \\ 0 & 0 & 1 \end{bmatrix}$

ICASSP 2021

• Assume the inter-frame motion model is the simplified affine transformation $A = \begin{bmatrix} s \cdot \cos(\theta) & -s \cdot \sin(\theta) & t_x \\ s \cdot \sin(\theta) & s \cdot \cos(\theta) & t_y \\ 0 & 0 & 1 \end{bmatrix}$

• s, θ, t_x, t_y are the scale, rotation, and translations in x, y axis.

ICASSP 2021

- Assume the inter-frame motion model is the simplified affine transformation $A = \begin{bmatrix} s \cdot \cos(\theta) & -s \cdot \sin(\theta) & t_x \\ s \cdot \sin(\theta) & s \cdot \cos(\theta) & t_y \\ 0 & 0 & 1 \end{bmatrix}$
- s, θ, t_x, t_y are the scale, rotation, and translations in x, y axis.
- Once *A* is estimated by RANSAC, the four parameters are extracted and will be smoothed.

ICASSP 2021

• Start by considering motion smoothing as

$$\underset{\overline{m}_1,\dots,\overline{m}_n}{\arg\min} \sum_{i=1}^n (m_i - \overline{m}_i)^2 + \lambda \sum_{i=2}^n (\overline{m}_i - \overline{m}_{i-1})^2$$
(1)

where m_i and \overline{m}_i are the original and smoothed motion for the i^{th} frame.

ICASSP 2021

Start by considering motion smoothing as

$$\underset{\overline{m}_1,\dots,\overline{m}_n}{\arg\min} \sum_{i=1}^n (m_i - \overline{m}_i)^2 + \lambda \sum_{i=2}^n (\overline{m}_i - \overline{m}_{i-1})^2$$
(1)

where m_i and \overline{m}_i are the original and smoothed motion for the i^{th} frame.

• Find all stable motions $\overline{m}_1, \ldots, \overline{m}_n$ at once. Real-time solver needed.

ICASSP 2021

Start by considering motion smoothing as

$$\underset{\overline{m}_1,\dots,\overline{m}_n}{\arg\min} \sum_{i=1}^n (m_i - \overline{m}_i)^2 + \lambda \sum_{i=2}^n (\overline{m}_i - \overline{m}_{i-1})^2$$
(1)

where m_i and \overline{m}_i are the original and smoothed motion for the i^{th} frame.

- Find all stable motions $\overline{m}_1, \ldots, \overline{m}_n$ at once. Real-time solver needed.
- Even it can be solved in real-time, fail to capture the relationship between successive solutions $(\overline{m}_1^n, \ldots, \overline{m}_n^n)$ and $(\overline{m}_1^{n+1}, \ldots, \overline{m}_{n+1}^{n+1})$

ICASSP 2021

A direct approach

$$\overline{m}_n = \underset{\overline{m}_n}{\operatorname{arg\,min}} \sum_{i=1}^{n-1} (m_i - \widehat{m}_i)^2 + (m_n - \overline{m}_n)^2 + \lambda \sum_{i=2}^n (\widehat{m}_i - \widehat{m}_{i-1})^2 + \lambda (\overline{m}_n - \widehat{m}_{n-1})^2$$
(2)

where $\widehat{m}_1, \ldots, \widehat{m}_{n-1}$ are the previous smoothed motions. \overline{m}_n is the current smoothed estimate.

ICASSP 2021

A direct approach

$$\overline{m}_n = \underset{\overline{m}_n}{\operatorname{arg\,min}} \sum_{i=1}^{n-1} (m_i - \widehat{m}_i)^2 + (m_n - \overline{m}_n)^2 + \lambda \sum_{i=2}^n (\widehat{m}_i - \widehat{m}_{i-1})^2 + \lambda (\overline{m}_n - \widehat{m}_{n-1})^2$$
(2)

where $\hat{m}_1, \ldots, \hat{m}_{n-1}$ are the previous smoothed motions. \overline{m}_n is the current smoothed estimate.

• We can further simplify (2) to:

$$\overline{m}_{n} = \underset{\overline{m}_{n}}{\arg\min(m_{n} - \overline{m}_{n})^{2}} + \lambda(\overline{m}_{n} - \widehat{m}_{n-1})^{2}$$
(3)

ICASSP 2021

• We can further simplify (2) to:

$$\overline{m}_n = \operatorname*{arg\,min}_{\overline{m}_n} (m_n - \overline{m}_n)^2 + \lambda (\overline{m}_n - \widehat{m}_{n-1})^2 \tag{3}$$

ICASSP 2021

• We can further simplify (2) to:

$$\overline{m}_n = \operatorname*{arg\,min}_{\overline{m}_n} (m_n - \overline{m}_n)^2 + \lambda (\overline{m}_n - \widehat{m}_{n-1})^2$$
(3)

• Since (3) is quadratic, the minimum occurs when the derivative is zero. The solution is

$$\overline{m}_n = \frac{m_n + \lambda \widehat{m}_{n-1}}{1 + \lambda} \tag{4}$$

ICASSP 2021

• We can further simplify (2) to:

$$\overline{m}_n = \operatorname*{arg\,min}_{\overline{m}_n} (m_n - \overline{m}_n)^2 + \lambda (\overline{m}_n - \widehat{m}_{n-1})^2$$
(3)

• Since (3) is quadratic, the minimum occurs when the derivative is zero. The solution is

$$\overline{m}_n = \frac{m_n + \lambda \widehat{m}_{n-1}}{1 + \lambda} \tag{4}$$

However, (4) only involves the last stabilized motion m
n-1 and the current motion mn.

ICASSP 2021

• We can further simplify (2) to:

$$\overline{m}_n = \operatorname*{arg\,min}_{\overline{m}_n} (m_n - \overline{m}_n)^2 + \lambda (\overline{m}_n - \widehat{m}_{n-1})^2$$
(3)

• Since (3) is quadratic, the minimum occurs when the derivative is zero. The solution is

$$\overline{m}_n = \frac{m_n + \lambda \widehat{m}_{n-1}}{1 + \lambda} \tag{4}$$

- However, (4) only involves the last stabilized motion m
 n-1 and the current motion mn.
- Thus has a limited ability to stabilizing the current frame.

Modified Recursive Least Squares formulation (MRLS)

$$\underset{\overline{m}_1,\ldots,\overline{m}_n}{\arg\min} \sum_{i=1}^n (m_i - \overline{m}_i)^2 + \lambda_1 \sum_{i=2}^n (\overline{m}_i - \overline{m}_{i-1})^2 + \lambda_2 \sum_{i=1}^{n-1} (\overline{m}_i - \widehat{m}_i)^2$$
(5)

ICASSP 2021

Modified Recursive Least Squares formulation (MRLS)

$$\underset{\overline{m}_1,\ldots,\overline{m}_n}{\arg\min} \sum_{i=1}^n (m_i - \overline{m}_i)^2 + \lambda_1 \sum_{i=2}^n (\overline{m}_i - \overline{m}_{i-1})^2 + \lambda_2 \sum_{i=1}^{n-1} (\overline{m}_i - \widehat{m}_i)^2$$
(5)

• Similar to (1), (5) also tries to estimate an augmented path $(\overline{m}_1, \ldots, \overline{m}_n)$.

ICASSP 2021

Modified Recursive Least Squares formulation (MRLS)

$$\underset{\overline{m}_1,\ldots,\overline{m}_n}{\arg\min} \sum_{i=1}^n (m_i - \overline{m}_i)^2 + \lambda_1 \sum_{i=2}^n (\overline{m}_i - \overline{m}_{i-1})^2 + \lambda_2 \sum_{i=1}^{n-1} (\overline{m}_i - \widehat{m}_i)^2$$
(5)

- Similar to (1), (5) also tries to estimate an augmented path $(\overline{m}_1, \ldots, \overline{m}_n)$.
- $(\overline{m}_1, \ldots, \overline{m}_n)$ is guaranteed to be smooth by the minimization of $\lambda_1 \sum_{i=2}^n (\overline{m}_i \overline{m}_{i-1})^2$.

ICASSP 2021

Modified Recursive Least Squares formulation (MRLS)

$$\underset{\overline{m}_1,\ldots,\overline{m}_n}{\arg\min} \sum_{i=1}^n (m_i - \overline{m}_i)^2 + \lambda_1 \sum_{i=2}^n (\overline{m}_i - \overline{m}_{i-1})^2 + \lambda_2 \sum_{i=1}^{n-1} (\overline{m}_i - \widehat{m}_i)^2$$
(5)

- Similar to (1), (5) also tries to estimate an augmented path $(\overline{m}_1, \ldots, \overline{m}_n)$.
- $(\overline{m}_1, \ldots, \overline{m}_n)$ is guaranteed to be smooth by the minimization of $\lambda_1 \sum_{i=2}^n (\overline{m}_i \overline{m}_{i-1})^2$.
- In (5), $\lambda_2 \sum_{i=1}^{n-1} (\overline{m}_i \widehat{m}_i)^2$ secures that $(\overline{m}_1, \ldots, \overline{m}_n)$ is similar to $(\widehat{m}_1, \ldots, \widehat{m}_{n-1})$, making sure that $(\widehat{m}_1, \ldots, \widehat{m}_{n-1}, \widehat{m}_n = \overline{m}_n)$ will also form a smooth curve.

8/16

First attempt

$$\underset{\overline{m}_1,\ldots,\overline{m}_n}{\arg\min} \sum_{i=1}^n (m_i - \overline{m}_i)^2 + \lambda \sum_{i=2}^n (\overline{m}_i - \overline{m}_{i-1})^2$$
(1)

9/16

First attempt

$$\underset{\overline{m}_1,...,\overline{m}_n}{\arg\min} \sum_{i=1}^n (m_i - \overline{m}_i)^2 + \lambda \sum_{i=2}^n (\overline{m}_i - \overline{m}_{i-1})^2$$
(1)

Second attempt

$$\overline{m}_n = \operatorname*{arg\,min}_{\overline{m}_n} (m_n - \overline{m}_n)^2 + \lambda (\overline{m}_n - \widehat{m}_{n-1})^2 \tag{3}$$

ICASSP 2021

First attempt

$$\underset{\overline{m}_{1},...,\overline{m}_{n}}{\arg\min} \sum_{i=1}^{n} (m_{i} - \overline{m}_{i})^{2} + \lambda \sum_{i=2}^{n} (\overline{m}_{i} - \overline{m}_{i-1})^{2}$$
(1)

Second attempt

$$\overline{m}_n = \underset{\overline{m}_n}{\operatorname{arg\,min}} (m_n - \overline{m}_n)^2 + \lambda (\overline{m}_n - \widehat{m}_{n-1})^2$$
(3)

MRLS

$$\underset{\overline{m}_1,\dots,\overline{m}_n}{\arg\min} \sum_{i=1}^n (m_i - \overline{m}_i)^2 + \lambda_1 \sum_{i=2}^n (\overline{m}_i - \overline{m}_{i-1})^2 + \lambda_2 \sum_{i=1}^{n-1} (\overline{m}_i - \widehat{m}_i)^2$$
(5)

9/16

An Recursive Solver

• (5) is convex. Setting all partial derivatives to zero results in

• The key idea is the last row of S_n^{-1} can be derived from S_{n-1}^{-1} in O(n).

10/16

Theorem 1

where a = (1

Let $S_{n-1} = [\mathbf{S}_{n-1}|I]$ be an augmented matrix, where I is the identity matrix. $S_{n-1}^e = [S_{n-1}^e|A_{n-1}]$ is the echelon form of S_{n-1} with $b = -\lambda_1$ as leading term for each row. Then $\{S_{n-1}^e\}_{n-2} \in \mathbb{R}^{2(n-1)}$ and $\{S_n^e\}_n \in \mathbb{R}^{2n}$ have the form:

$$\{S_{n-1}^{e}\}_{n-2} = (6)$$

$$\begin{bmatrix} 0 & \cdots & b & x_{1}^{(n-1)} & y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n-3}^{(n-1)} & 0 \end{bmatrix}$$

$$\{S_{n}^{-1}\}_{n} = \begin{bmatrix} \frac{y_{1}^{(n-1)}b}{q_{n}} & \cdots & \frac{y_{n-3}^{(n-1)}b}{q_{n}} & \frac{-b}{q_{n}} & \frac{c-x_{1}^{(n-1)}}{q_{n}} \end{bmatrix} (7)$$

$$\{\cdot\}_{i} \text{ denotes the } i^{th} \text{ row of a matrix and}$$

$$+\lambda_{1} + \lambda_{2}), b = -\lambda_{1}, c = (1+2\lambda_{1}+\lambda_{2}), d = (\lambda_{1}+1).$$

Timing performance

Table: Overall timing performance of the proposed algorithm on public data set in [6, 8, 18]

	SURF	Motion			
Resolution	and	RANSAC	Smooth-	Total(ms)	
	FLANN		ing		
320×240	6.83	2.29	0.14	9.26	
640×360	8.48	3.30	0.56	12.34	
1280×720	17.30	5.28	1.04	23.62	

12/16

Stabilization performance

- ITF(Inter-frame Transformation Fidelity) is a popular evaluation metric of stabilization quality.
- ITF defined as

$$ITF = \frac{1}{N-1} \sum_{k=1}^{N-1} PSNR(F_{k+1}, F_k)$$
(8)

where N is the total number of frames.

13/16

Stabilization performance

 Table 2. Comparison of ITF for different video stabilization methods

	Offline			Real-time		
Videos	[6]	[8]	[18]	[19]	[12]	Ours
18AF	21.33	27.09	27.55	21.54	23.15	24.98
Fountain	27.16	32.27	31.87	27.62	28.14	28.68
Talking	23.30	25.94	25.97	23.40	23.52	23.64
Dancing	22.62	22.40	22.49	21.32	22.96	21.87
Traffic	23.74	26.87	26.77	21.59	24.09	24.18
Street	22.48	24.32	27.98	21.85	23.78	24.33
Park	21.66	27.47	27.49	22.04	23.19	23.56
Parking lot	28.81	25.95	27.02	18.52	21.76	22.38
Dynamic	21.12	22.04	22.03	20.24	21.42	21.44
Degenerate	22.37	23.18	22.63	20.78	22.02	22.72

14/16

ICASSP 2021

Jianwei Ke (UW-Madison)

More results: https://ieee-dataport.org/open-access/lsstab-results (DOI: 10.21227/e1dj-g876)

Thank you!

15/16

ICASSP 2021

Jianwei Ke (UW-Madison)

