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Most existing video stabilization methods are offline. However,
there is an increasing demand (robotics, drone, etc.) of real-time
online methods.

Some real-time stabilization methods have high latency as they
require future frames for path planning.
Other real-time methods rely heavily on Kalman filter where the
covariance matrix and the state transfer matrix must be assumed.
We present a simple and efficient real-time online video
stabilization algorithm(LSstab) with minimum latency.
LSstab is based on a novel Least squared formulation of the
smoothing cost function. A recursive solver is derived for
optimizing the cost function.

Jianwei Ke (UW-Madison) LSstab ICASSP 2021 2 / 16



Content

Content

Most existing video stabilization methods are offline. However,
there is an increasing demand (robotics, drone, etc.) of real-time
online methods.
Some real-time stabilization methods have high latency as they
require future frames for path planning.

Other real-time methods rely heavily on Kalman filter where the
covariance matrix and the state transfer matrix must be assumed.
We present a simple and efficient real-time online video
stabilization algorithm(LSstab) with minimum latency.
LSstab is based on a novel Least squared formulation of the
smoothing cost function. A recursive solver is derived for
optimizing the cost function.

Jianwei Ke (UW-Madison) LSstab ICASSP 2021 2 / 16



Content

Content

Most existing video stabilization methods are offline. However,
there is an increasing demand (robotics, drone, etc.) of real-time
online methods.
Some real-time stabilization methods have high latency as they
require future frames for path planning.
Other real-time methods rely heavily on Kalman filter where the
covariance matrix and the state transfer matrix must be assumed.

We present a simple and efficient real-time online video
stabilization algorithm(LSstab) with minimum latency.
LSstab is based on a novel Least squared formulation of the
smoothing cost function. A recursive solver is derived for
optimizing the cost function.

Jianwei Ke (UW-Madison) LSstab ICASSP 2021 2 / 16



Content

Content

Most existing video stabilization methods are offline. However,
there is an increasing demand (robotics, drone, etc.) of real-time
online methods.
Some real-time stabilization methods have high latency as they
require future frames for path planning.
Other real-time methods rely heavily on Kalman filter where the
covariance matrix and the state transfer matrix must be assumed.
We present a simple and efficient real-time online video
stabilization algorithm(LSstab) with minimum latency.

LSstab is based on a novel Least squared formulation of the
smoothing cost function. A recursive solver is derived for
optimizing the cost function.

Jianwei Ke (UW-Madison) LSstab ICASSP 2021 2 / 16



Content

Content

Most existing video stabilization methods are offline. However,
there is an increasing demand (robotics, drone, etc.) of real-time
online methods.
Some real-time stabilization methods have high latency as they
require future frames for path planning.
Other real-time methods rely heavily on Kalman filter where the
covariance matrix and the state transfer matrix must be assumed.
We present a simple and efficient real-time online video
stabilization algorithm(LSstab) with minimum latency.
LSstab is based on a novel Least squared formulation of the
smoothing cost function. A recursive solver is derived for
optimizing the cost function.

Jianwei Ke (UW-Madison) LSstab ICASSP 2021 2 / 16



Algorithm Flowchart

Algorithm Flowchart
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Least Squared based Motion Smoothing

Least Squared based Motion Smoothing

Assume the inter-frame motion model is the simplified affine

transformation A =

s · cos(θ) −s · sin(θ) tx
s · sin(θ) s · cos(θ) ty

0 0 1



s, θ, tx, ty are the scale, rotation, and translations in x, y axis.
Once A is estimated by RANSAC, the four parameters are
extracted and will be smoothed.
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Least Squared based Motion Smoothing

Least Squared based Motion Smoothing

Start by considering motion smoothing as

argmin
m1,...,mn

n∑
i=1

(mi −mi)
2 + λ

n∑
i=2

(mi −mi−1)
2 (1)

where mi and mi are the original and smoothed motion for the ith

frame.

Find all stable motions m1, . . . ,mn at once. Real-time solver
needed.
Even it can be solved in real-time, fail to capture the relationship
between successive solutions (mn

1 , . . . ,m
n
n) and (mn+1

1 , . . . ,mn+1
n+1)
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Least Squared based Motion Smoothing

A direct approach

A direct approach

mn = argmin
mn

n−1∑
i=1

(mi − m̂i)
2 + (mn −mn)

2+ (2)

λ

n∑
i=2

(m̂i − m̂i−1)
2 + λ(mn − m̂n−1)

2

where m̂1, . . . , m̂n−1 are the previous smoothed motions. mn is
the current smoothed estimate.

We can further simplify (2) to:

mn = argmin
mn

(mn −mn)
2 + λ(mn − m̂n−1)

2 (3)
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Least Squared based Motion Smoothing

A direct approach

We can further simplify (2) to:

mn = argmin
mn

(mn −mn)
2 + λ(mn − m̂n−1)

2 (3)

Since (3) is quadratic, the minimum occurs when the derivative is
zero. The solution is

mn =
mn + λm̂n−1

1 + λ
(4)

However, (4) only involves the last stabilized motion m̂n−1 and the
current motion mn.
Thus has a limited ability to stabilizing the current frame.
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Least Squared based Motion Smoothing

Modified Recursive Least Squares Stabilization

Modified Recursive Least Squares formulation (MRLS)

argmin
m1,...,mn

n∑
i=1

(mi−mi)
2+λ1

n∑
i=2

(mi−mi−1)
2+λ2

n−1∑
i=1

(mi−m̂i)
2 (5)

Similar to (1), (5) also tries to estimate an augmented path
(m1, . . . ,mn).
(m1, . . . ,mn) is guaranteed to be smooth by the minimization of
λ1

∑n
i=2(mi −mi−1)

2.
In (5), λ2

∑n−1
i=1 (mi − m̂i)

2 secures that (m1, . . . ,mn) is similar to
(m̂1, . . . , m̂n−1), making sure that (m̂1, . . . , m̂n−1, m̂n = mn) will
also form a smooth curve.
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Least Squared based Motion Smoothing

First attempt
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m1,...,mn
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(mi −mi)
2 + λ
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(mi −mi−1)
2 (1)

Second attempt

mn = argmin
mn

(mn −mn)
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2 (3)

MRLS
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m1,...mn
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i=1

(mi−mi)
2+λ1

n∑
i=2

(mi−mi−1)
2+λ2

n−1∑
i=1

(mi−m̂i)
2 (5)

Jianwei Ke (UW-Madison) LSstab ICASSP 2021 9 / 16



Least Squared based Motion Smoothing

First attempt

argmin
m1,...,mn

n∑
i=1

(mi −mi)
2 + λ

n∑
i=2

(mi −mi−1)
2 (1)

Second attempt

mn = argmin
mn

(mn −mn)
2 + λ(mn − m̂n−1)

2 (3)

MRLS

argmin
m1,...mn

n∑
i=1

(mi−mi)
2+λ1

n∑
i=2

(mi−mi−1)
2+λ2

n−1∑
i=1

(mi−m̂i)
2 (5)

Jianwei Ke (UW-Madison) LSstab ICASSP 2021 9 / 16



Least Squared based Motion Smoothing

First attempt

argmin
m1,...,mn

n∑
i=1

(mi −mi)
2 + λ

n∑
i=2

(mi −mi−1)
2 (1)

Second attempt

mn = argmin
mn

(mn −mn)
2 + λ(mn − m̂n−1)

2 (3)

MRLS

argmin
m1,...mn

n∑
i=1

(mi−mi)
2+λ1

n∑
i=2

(mi−mi−1)
2+λ2

n−1∑
i=1

(mi−m̂i)
2 (5)

Jianwei Ke (UW-Madison) LSstab ICASSP 2021 9 / 16



Least Squared based Motion Smoothing

An Recursive Solver

(5) is convex. Setting all partial derivatives to zero results in

The key idea is the last row of S−1
n can be derived from S−1

n−1 in
O(n).
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Least Squared based Motion Smoothing

Theorem 1
Let Sn−1 = [Sn−1|I] be an augmented matrix, where I is the identity
matrix. Sen−1 = [Se

n−1|An−1] is the echelon form of Sn−1 with b = −λ1
as leading term for each row. Then {Se

n−1}n−2 ∈ R2(n−1) and
{Se

n}n ∈ R2n have the form:

{Sen−1}n−2 = (6)[
0 · · · b x

(n−1)
1 y

(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n−3 0

]

{S−1
n }n =

[
y
(n−1)
1 b
qn

· · · y
(n−1)
n−3 b

qn
−b
qn

c−x
(n−1)
1
qn

]
(7)

where {·}i denotes the ith row of a matrix and
a = (1 + λ1 + λ2), b = −λ1, c = (1 + 2λ1 + λ2), d = (λ1 + 1).
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Experiment and Result

Timing performance

Table: Overall timing performance of the proposed algorithm on public data
set in [6, 8, 18]
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Experiment and Result

Stabilization performance

ITF(Inter-frame Transformation Fidelity) is a popular evaluation
metric of stabilization quality.
ITF defined as

ITF =
1

N − 1

N−1∑
k=1

PSNR(Fk+1, Fk) (8)

where N is the total number of frames.
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Experiment and Result

More results: https://ieee-dataport.org/open-access/lsstab-results
(DOI: 10.21227/e1dj-g876)

Thank you!
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