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Abstract

We propose a novel fundamental frequency (f0) estimation technique called

DeepF0, which leverages the available annotated data to directly learn from

the raw audio in a data-driven manner. f0 estimation is important in various

speech processing and music information retrieval applications. Existing deep

learning models for pitch estimation have relatively limited learning capabilities

due to their shallow receptive field. The proposed model addresses this issue

by extending the receptive field of a network by introducing the dilated con-

volutional blocks into the network. The dilation factor increases the network

receptive field exponentially without increasing the parameters of the model ex-

ponentially. To make the training process more efficient and faster, DeepF0 is

augmentedwith residual blocks with residual connections. Our empirical evalua-

tion demonstrates that the proposed model outperforms the baselines in terms

of raw pitch accuracy and raw chroma accuracy even using 77.4% fewer net-

work parameters. We also show that our model can capture reasonably well

pitch estimation even under various levels of accompaniment noise.

Introduction

The fundamental frequency often called as pitch is the lowest and predominant frequency in a

complex periodic signal.

Pitch estimation has been studied for the last 5 decades due to its central importance in range

of speech processing and music information retrieval applications.

Pitch estimation approaches are categorized into two broad categories: digital signal process-

ing (DSP) based approaches, and data-driven approaches.

The DSP based methods mostly based on auto-correlation, cross-correlation function and

thier variants, which calculate the self similarity between original and the lagged version of the

signal.

These approaches are computationally intensive, not robust in noisy environments, fail when

the pitch is rapidly changing, and do not learn anything from available data.

On the other hand, data-driven approaches take full advantage of the available data and learn

the estimation model based on the data itself.

Problem Statement

Although these data driven deep learning based models can outperform digital signal processing-

based methods. However, they still have limitations:

Shallow receptive fields (as illustrated in Fig. 1)

Large number of network parameters

Proposed Architecture

To deal with these issues, we proposed dilated temporal convolutional neural networks (Fig.2).

Dilation introduces the holes in a convolution kernel, which skip certain values, making recep-

tive field bigger than the filter size [1].

As a result, the receptive field grows exponentially while the number of parameters grows

linearly (as illustrated in Fig. 1).

We incorporated residual blocks and residual connections (Fig. 3) between these blocks, which

helped in efficient training of our model [2].

The raw 16kHz audio input is resampled into 1024 samples in a frame with 160 samples of

overlap.

The model outputs 360-dimensional vector, which represents pitches on the logarithmic scale

measured in terms of cents (a unit to measure small musical intervals).

Proposed Architecture
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Figure 1. Receptive field size comparison between Standard CNN and Dilated CNN. With 5

layers and kernel size 64 standard CNN achieves receptive field around 300, where as with

same number of layers and kernel size dilated CNNwith dilation rate upto 16 achieves receptive

fields as large as ≈2000.

10
24

 ra
w

 a
ud

io
 s

am
pl

es

C
on

v1
d

R
es

id
ua

l b
lo

ck
-1

R
es

id
ua

l b
lo

ck
-2

R
es

id
ua

l b
lo

ck
-3

Avg-pool

20
48

 fl
at

te
rn

Fu
lly

-c
on

ne
ct

ed

36
0 

ou
tp

ut

Residual Blocks

   Filters: 128
Kernel size: 64

Average pool: 64

R
es

id
ua

l b
lo

ck
-4

Figure 2. Network architecture of DeepF0.
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Figure 3. Internal view of a residual block of DeepF0.

Experimental Setup

The proposed model is trained using 5-fold cross-validation with 60/20/20 split of train, vali-

dation, and test, respectively.

The split is carried out in such a way that no artist/speaker/instrument overlaps with train and

test splits.

The proposed model is also tested on accompaniment noise with SNR levels of 20dB, 10dB,

and 0dB.

Datasets

MIR-1k (Singing Voices)

MDB-stem-synth

(Musical instruments)

PTDB-TUG (Speaking

Voices)

Evaluation metrics

Raw Pitch Accuracy (RPA)

Raw Chroma Accuracy

(RCA)

Baselines

Convolution

Representation for Pitch

Estimation (CREPE) [3]

Sawtooth Waveform

Inspired Pitch Estimator

(SWIPE) [4]

Results

Pitch Accuracy on Clean Datasets

Table 1. Average raw pitch accuracy and raw chroma accuracy and their standard deviation (±)

tested on three different test datasets.

Model Params Metrics
Datasets

MIR-1k MDB-stem-synth PTDB-TUG

SWIPE -
RPA (%) 88.73 ± 5.43 92.84 ± 9.59 87.74 ±7.17

RCA (%) 89.24 ± 5.28 93.83 ± 7.69 88.93 ± 6.12

CREPE 22.2M
RPA (%) 96.51 ± 3.23 97.22 ± 4.12 78.18 ± 10.07

RCA (%) 96.84 ± 2.56 97.55 ± 3.43 79.81 ±9.39

DeepF0 5M
RPA (%) 97.82 ± 3.34 98.38 ± 2.97 93.14 ± 3.32

RCA (%) 98.28 ± 1.94 98.44 ± 2.87 93.47 ± 3.41

Pitch Accuracy on Noisy Dataset

Table 2. Average raw pitch accuracy and raw chroma accuracy and their standard deviation (±)

on the MIR-1k dataset with added noise on various levels of SNR.

Model Metrics
Noise Profile

Clean 20dB 10dB 0dB

SWIPE
RPA (%) 88.73 ± 5.43 84.45 ± 5.64 59.78 ± 11.58 32.04 ± 11.84

RCA (%) 89.24 ± 5.28 85.31 ± 5.19 62.85 ± 11.07 37.31 ± 12.93

CREPE
RPA (%) 96.51 ± 3.23 96.49 ± 3.32 95.11 ± 4.65 84.92 ± 10.70

RCA (%) 96.84 ± 2.56 96.96 ± 2.63 96.18 ± 3.35 87.85 ± 8.82

DeepF0
RPA (%) 97.82 ± 3.34 97.39 ± 3.76 94.77± 6.03 79.52± 14.0

RCA (%) 98.28 ± 1.94 98.09 ± 2.10 96.35 ± 3.72 84.37 ± 10.71

Model Analysis

0 20 40 60 80
Epoch

0.4

0.6

0.8

1.0

Te
st

in
g
 R

PA
(%

)

d=1
d=2
d=4
d=8
d=16

Figure 4. Evaluation results of the proposed model with different dilation rates on the MDB-

stem-synth dataset. Dilation rate d = 8 shows the best results.

Conclusions

Our proposed model outperforms the baselines in terms of raw pitch and chroma accuracy.

DeepF0 is also efficient in terms of network parameters used. It uses 77.4% fewer network

parameters as compared to the CREPE model.

Further, we find that the larger size of the receptive field of the network is very significant in

pitch estimation, which aids in achieving excellent results with consistently low variance.
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