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Introduction Mutual information is a natural measure of dependence M-EMK density estimation performance

We evaluate the multidimensional integrals

» Independent vector analysis (IVA) is a recent generalization The goal in IVA is to estimate K demixing matrix, WX!, to yield R
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of independent component analysis (ICA) that enables the maximally independent source estimates
joint factorization of multiple datasets. ylK — Wikixl T, p and s denote the dimensional measure,
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sources; information that is generally unknown.
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multidimensional measuring functions to provide flexible and its gradient by ” PO P
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multivariate entropy maximization with kernels (IVA-M-EMK) M-EMK outperforms two popular density estimation algorithms2?.

that accurately separates sources from a wide range of Maximum entropy principle
distributions. IVA-M-EMK experimental results
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» IVA can separate mixed sources from multiple subjects by . L . .
. Jenendence across datasets such as the mean, variance, and certain higher order K = 3, one unimodal MGGD, and K = 2, three multi-modal
assuming source aepe ' statistics. two multi-modal MGGD sources. MGGD sources.
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