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min
x
kAx� bk s.t. x 2 C min

x
kAx� bk+ �c(x).

`2, `1, `0, `p norm, sparsity, TV-norm, smoothness, nonnegativity, cone, . . .

This talk: unimodal1 structure.

1
Not the unimodular structure in combinatorial optimization.
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Nu

0  a1  · · ·  ap�1 | {z }
increasing head

ap � ap+1 � · · · � am � 0
| {z }

decreasing tail

Figure: Nu vectors. Black: the sequence. Red dots: locations of p.
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Characterizing the Nu set

x 2 Rm is Nu () 9p 2 [m] s.t. 0  x1  · · ·  xp � · · · � xm � 0
| {z }

x2Um,p
+

.

I Notations: x 2 U
m
+ means x 2 Rm is Nu but p unknown.

I Facts
I U

m,p
+ is cvx

I U
m
+ =

S
k U

m,k
+ is noncvx

I The set Um,p
+ [ U

m,p+1
+ is cvx.

x 2 Rm is Nu () 9p 2 [m] s.t. x 2 U
m,p
+ [ U

m,p+1
+
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x 2 Rm is Nu () 9p 2 [m] s.t. x 2 U
m,p
+ [ U

m,p+1
+| {z }

convex

()

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

0  x1

x1  x2
...

xp�1  xp

xp+1 � xp+2
...

xm�1 � xm

xm � 0

() Upx � 0, Up =

0

BBBBBBBB@

2

6664

1
�1 1

. . .
. . .
�1 1

3

7775

p⇥p| {z }
Dp⇥p

0p⇥(m�p)

0(m�p)⇥p D
>
(m�p)⇥(m�p)

1

CCCCCCCCA

.

* Up is full rank.
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NuMF

I GIVEN M 2 Rm⇥n
+ and r 2 N,

FIND W 2 Rm⇥r and H 2 Rr⇥n such that

by solving

min 1
2kM�WHk

2
F s.t. H � 0,

wj 2 U
m
+ for all j 2 [r],

w
>
j 1m = 1 for all j 2 [r],

I Apply Nu characterization: wj 2 U
m
+ ! Upjwj � 0, where integers

p1, p2, . . . , pr are unknown.

I How to solve: BCD.
I Subproblem on H is simple.
I Main di�culty: subproblem on W.
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HALS: Column-wise block coordinate descent

1

2
kM�WHk

2
F =

1

2

���M�
rX

j=1

wjh
j
���
2

F

=
1

2

���M�
rX

j 6=i

wjh
j

| {z }
:=Mi

�wih
i
���
2

F

=
1

2
kMi �wih

i
k
2
F

= a quadratic function on wi
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The wi-subproblem

I A Linearly-Constrained Quadratic Program, cvx:

min
wi

kh
i
k
2
2

2
kwik

2
2 � hMih

i>,wii s.t. Upiwi � 0
| {z }
wi2U

m,pi
+

, w
>
i 1 = 1, (*)

I Involves integer variables, ncvx:

min
wi,pi

kh
i
k
2
2

2
kwik

2
2 � hMih

i>,wii s.t. wi 2 U
m
+ , w

>
i 1 = 1, (**)

I Brute-force: solve (*) on all p, pick the best one as pi to solve (**).

I Directly solving (**) by proximal gradient is not scalable ($$$).
I Proximal gradient on (**) = a 2-branch isotonic projection.
I Isotonic projection: x  y =) PKx  PKy.
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Speed up the brute-force algorithm for large m

min
wi

kh
i
k
2
2

2
kwik

2
2 � hMih

i>,wii s.t. Upiwi � 0, w
>
i 1 = 1, (*)

min
wi,pi

kh
i
k
2
2

2
kwik

2
2 � hMih

i>,wii s.t. Upiwi � 0, w
>
i 1 = 1, (**)

I Brute-force on p in [m] ok if m small.

I Speed up:
1. solve (*) by accelerated projected gradient.
2. reduce search space for pi in (**) by dimension reduction: multi-grid

I Multi-grid preserves Nu: a theorem with proof in 3 sentences!

I Other techniques such as PCA or Gaussian sampling do not work here

as they destroy the Nu.
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Speed up 1 : Accelerated Projected Gradient solving (*)

min
wi

kh
i
k
2
2

2
kwik

2
2 � hMih

i>,wii s.t. Upiwi � 0, w
>
i 1 = 1

| {z }
hard to project

. (*)

I Transform (*) via y = Uw:

min
y

1

2

D
kh

i
k
2
2U

�>
pi y, y

E
�

D
U

�>
pi Mih

i>, y
E
s.t. y � 0, y>

U
�>
pi 1 = 1

equivalently

min
y

1

2
hQy,yi � hp,yi s.t. y � 0, y

>
b = 1. (*0)

I y
⇤ of (*0) gives w⇤

i of (*) by y = Uw.
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Speed up 1: APG on solving y

min
y

1

2
hQy,yi � hp,yi s.t. y � 0, y

>
b = 1. (*0)

I Projection: P (z) = argmin
y

1

2
ky � zk

2
2 s.t. y � 0, y

>
b = 1.

I Optimal sol. by partial Lagrangian

y
⇤ (⇤)
= min

y�0
max
⌫

1

2
ky � zk

2
2 + ⌫(y>

b� 1)
| {z }

L(y,⌫)

= [z� ⌫⇤b]+| {z }
soft-thresholding

,

Lagrangian multiplier ⌫⇤ is the root of a piece-wise linear eqn.
mX

i=1

max
n
0, zi � ⌫bi

o
bi = 1,

which costs O(m) to O(m logm) to solve by sorting the break points
zi
bi
. After sorting, the magical-one-line-code that no one can read is

nu = max((cumsum(z.*b)-1)./(cumsum(b.*b)));

(*): The problem satisfies the Slater’s condition which guarantees strong duality. 11 / 18



Speed up 2: Multi-level / multi-grid

I Idea: instead of working on w, work on RN . . .R1w with smaller
search space of p.

I Restriction R 2 Rm1⇥m
+ changes x 2 Rm

+ to Rx 2 Rm1
+ , m1 < m.

R(a, b) =

2

666666664

a b

b a b
. . .

. . .
. . .

b a b

b a

3

777777775

,
a > 0, b > 0,

a+ 2b = 1.

I Theorem (if x is NU, then Rx is Nu) Let x 2 U
m,p
+ with p is

even2 and R 2 Rm1⇥m. Then y = Rx 2 N
m1,py
+ with

N
m,p
+ = U

m,p
+ [ U

m,p+1
+ and py 2 {b

p
2 + 1c, bp2c}.

2
If p is odd, by considering the vector [0,x] does not change the unimodality and

increases p by one.
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The three-sentence proof

Goal: show Rx is Nu if x is Nu.

1. Decomposition of R
2

664

a b

b a b

b a

3

775

| {z }
R

=

2

664

a

a

a

3

775

| {z }
A

+

2

664

b

b

3

775

| {z }
B

+

2

664 b

b

3

775

| {z }
C

So Rx = Ax+Bx+Cx

2. Ax, Bx and Cx are Nu * subvector of Nu vector is Nu.

3. The sum Ax+Bx+Cx is Nu * their p di↵er at most 1.
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The whole algorithm (in words) for NuMF(M, r)

Steps:

1. Restrict: M[N ] = RN . . .R1M and W
[N ]
0 = RN . . .R1W0.

2. Solve coarse problem: brute-force and APG on

[W[N ]
⇤ ,H⇤,p

[N ]
⇤ ] NuMF(M[N ],W[N ]

0 ,H0).

3. Interpolate: [W0,p0] Interpolate(W[N ]
⇤ ,p[N ]

⇤ ).

4. Solve the original fine problem:

[W⇤,H⇤,p⇤] NuMF(M,W0,H0,p0).

no brute-forcing!
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Convergence

I Optimization: sequence converge to a local minima.

I Linear Algebra: sequence converge to a global minima.
Identifiability – when does solving NuMF give a unique sol?
Three identifiability results for three special cases.

See paper for details.
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Fancy picture: multi-grid saves 75% time with 2-layer

Figure: Experiment on a toy example. All algo. run 100 iterations with same
initialization. For algo. with MG, the computational time taken on the coarse
grid are also taken into account, as reflected by the time gap between time 0 and
the first dot in the curves.

15 / 18



Fancy picture: on Belgian beers
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Fancy picture: on r > n

I On a data vector in R947
+ (black curve) with r = 8 > 1 = n.

I Cyan curves are the components wihi.

I Relative error kM�WHkF /kMkF = 10�8.

I The first two peaks in the data satisfy an identifiability Theorem,
NuNMF identifies them perfectly.

I For the other peaks: supports overlap, decomposition not unique.
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Last page - summary

I NuMF problem: nonconvex and block-nonconvex.

I Nu characterization and brute-force

I Acceleration by APG and MG

I Identifiability of NuMF (Not discussed in-depth)

I Applications

I References
I A, Gillis, Vandaele and De Sterck, “Nonnegative Unimodal Matrix

Factorization”.

I Chapter 5 of my thesis “Nonnegative Matrix and Tensor Factorizations:
Models, Algorithms and Applications”.

I Slide, paper, code at angms.science
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