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Abstract and contributions
« Introduce a new model: NuMF (= NMF + unimodal).

« Propose BCD algo. to solve NuMF, the algo. = brute-force + ac-
celerated projected gradient + Multi-Grid (MG).

 Prove restriction operator preserves the unimodality in MG.
 Provide preliminary identifiability results of NuMF on special cases.

« Empirical results confirm 1) the effectiveness of the pr posed algo.
and 2) the theory on NuMF.

Nonnegative unimodality (Nu)
Def. 1. (Nu) x € R is Nu if dp € /m| :=[1,2,...,m| such that

0<m <9< < a2p>Tpg1 2>+ 2Ty 2 0. (1)

« Notation: x € U and x € U™

« p is the location of change of tonicity:.

e p can be nonunique.

. p is known in Uy P, this set is convex.

e p is unknown in ", this set is nonconvex.

« Examples of Nu vectors:

AR

Nu Matrix Factorization
Def. 2. (NuMF) Given M € R"*" r € N solve

1
minimize 2Hl\/I ~ WH||% fitting term

WERmxerERrxn
subject to H >0

w; € U'Vj € r]
W]-Tlm =1Vj € [r]

H is nonnegative
columns of W are Nu

normalization on W

« We solve NuMF by Block Coordinate Descent (BCD).
— HALS: we update the columns of W and rows of H one-by-one
 Subproblem on H is NNLS, simple.

« Subproblem on W is nonconvex, difficult to solve = the main
difficulty in solving NuMF

Characterizing Nu

e Fact: the union U} P Uy’ s cvx
x e R"™isNu:x e it Ip € Im| s.t. x € Z/{_T’pUZ/{T’pH, ie.
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That is, we characteized the membership of Nu set by a matrix-vector
product by introducing a integer parameter p.

Subproblem on W

« The Nu-characterization means subproblem on w; is a Linearly-
constrained QQuadratic Program with unknown integer p;

mm<“’“2 Wi) _ (c,w;) st. Upw; >0, w1 =1 (¥)

W;

for some constant B, c, c.

e In general, p; is unknown

\%l-i}@l- <W172 Wz> _ <C,WZ'> S.t. W; € Z/[T > 0, WiTlm — 1. <*>|<>

e Solve (**) by brute force: try all p; on (*), pick the best one as p.
« Speed up 1: solve (*) by accelerated Projected Gradient
— Change of variable y = Ux change (*) to another LCQP

(v, Qy)

1

yn = —(p,y) sty 20, y'b=1 (*')

|
— Projection step: m};n 2HZ —y||5 st. y >0, y'b=1, which

can be solved by partial Lagrangian

* - 1
y = min max

mig mgx |z = |3 +v(y b —1) (#)

* Equality due to strong duality: U nonsingular = b >0 —
Slater’s condition.

% (#) has closed-form solution as soft-thresholding: |z — v*b|4,
where p* is the optimal Lagrangian multiplier, which is the root
of the piece-wise linear equation

'TerLl max {O, & — UV — bi}bi — 1,
1=

which can be solved with complexity O(m) to O(mlogm) by
sorting the break points ’gz

« Speed up 2: we speed up brute force on p; by dimension reduction:
make the search space for p; smaller.

— We use multi-grid: because it preserves Nu.
— PCA not work here: destroy Nu structure.

Multi-grid: dimension reduction

Def. 3. Restriction operator R is defined as x — Rx, where
R € R with my < m

R = , a>0,b>0, a+20=1.

Theorem 1. (Restriction preserves Nu) Letx c U’ and
R € R™*™ theny = Rx € N "™ with p, € {I5+1], 5]},

where NY'°V =P UZ/I_T’pH, which is a subset of the Nu vectors.

« Proof in 3 sentences, the core ideas:
1. Rx =Ax+ Bx + Cx
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2. Ax, Bx, Cx are Nu, because they are all subvector of a Nu vector.

3. The p values of Ax, Bx, Cx are at most differ by 1, so by the
Nu-characterization, their sum is Nu.
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The whole algorithm

Algorithm 1: Proposed algorithm for solving NuMF
Result: W H that solves NuMF

for k=1,2,... do

for:=1,2,...,rdo

Update h? by solving a NNLS (with closed-form update);
Update w* by solving (**) using brute force search on p;;

 Restrict the data along column dimension

» Solve the coarse problem (x:x):

projected gradient, pick the best sol. as p}
 Prolongate p; to the original dimension

« Solve the subproblem (*) on the original fine grid with the
information of p;, no brute force is needed

end
end

Preliminary identifiability results
o Identifiability: when does solving NuMF recover the ground truth.

o Identifiability of NuMF is highly related to the support of the Nu
vectors.

Def. 4. (Strictly disjoint) Given two vectors x,y € U’
with supp(x) = |az, by and supp(y) = |ay, by]. The two vectors are
called strictly disjoint if ay > by + 1.

Theorem 2. (Strictly disjoint Nu wvectors) Assumes M =
WH. Solving NuMF recovers (W, H) if

1. W is Nu and all the columns have strictly disjoint support.
2H R hasn > 1, ||h'|oo > 0 fori € [r].
 Strong assumptions, but they are satisfied in chemistry datasets.

e The theorem holds for r > n which is uncommon for most NMF
models.

Lemma 1. (On demixing two non-fully overlapping Nu
vectors) Given two non-zero vectors X,y in UM with supp(x) €
supp(y) and supp(x) 2 supp(y). If x,y are generated by two non-
zero Nu vectors u,v as x = au+ bv and y = cu + dv with non-
negative coefficients a,b,c,d , then we have either u = X, v =y
oru=y, v=X.

Theorem 3. Assumes M = WH. Ifr =2, solving NuMF recov-
ers (W, H) if the col. of W satisfy the conditions of Lemma 1 and
H e R"*" is full rank.

Experiments
Toy example on MG performance
Wirue Data M : a 100-by-6 matrix
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« Special-made synthetic dataset to test MG and theory:.

—Try all p; on the coarse problem (x). Solve it by accelerated
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« MG save 75% time for 2-layer. Faster than existing approaches.

« NuMF is ncvx, but we have convergence to global minima because
the dataset satisty the identifiability assumptions.

On data with r >n (r=8,n=1)
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« Factorization rank > data dimension, not possible for NMF.

o First three peaks in the data satisty Theorem 2 so they are pertectly
recovered. Other peaks have overlapped support and their decom-
position 1s non-unique.

« Identifiability of Nu vectors with overlapped support remains open.

On GCMS data of Belgian beers
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 Application of Nu in analytical chemistry:.

« Other NMF models produce mixed results.

Conclusion and future works

NuMF': characterization, algorithm, theory, experimental verifications.
Future works: General identifiability theory of NuMF. NuMFE with
rows of H also Nu. Log-concavity of vectors. Applications.
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