
Nonnegative Unimodal Matrix Factorization
Andersen Ang, Nicolas Gillis, Arnaud Vandaele, Hans De Sterck

Contact: Andersen Ang email: ms3ang@uwaterloo.ca
Department of Combinatorics and Optimization, University of Waterloo, Canada

Abstract and contributions
• Introduce a new model: NuMF (= NMF + unimodal).
• Propose BCD algo. to solve NuMF, the algo. = brute-force + ac-

celerated projected gradient + Multi-Grid (MG).
• Prove restriction operator preserves the unimodality in MG.
• Provide preliminary identifiability results of NuMF on special cases.
• Empirical results confirm 1) the effectiveness of the pr posed algo.

and 2) the theory on NuMF.

Nonnegative unimodality (Nu)
Def. 1. (Nu) x ∈ Rm is Nu if ∃p ∈ [m] := [1, 2, . . . ,m] such that

0 ≤ x1 ≤ x2 ≤ · · · ≤ xp ≥ xp+1 ≥ · · · ≥ xm ≥ 0. (1)

• Notation: x ∈ Um,p+ and x ∈ Um+ .
• p is the location of change of tonicity.
• p can be nonunique.
• p is known in Um,p+ , this set is convex.
• p is unknown in Um+ , this set is nonconvex.
• Examples of Nu vectors:

Nu Matrix Factorization
Def. 2. (NuMF) Given M ∈ Rm×n+ , r ∈ N solve

minimize
W∈Rm×r,H∈Rr×n

1
2‖M−WH‖2F fitting term

subject to H ≥ 0 H is nonnegative
wj ∈ Um+ ∀j ∈ [r] columns of W are Nu
w>j 1m = 1∀j ∈ [r] normalization on W

• We solve NuMF by Block Coordinate Descent (BCD).
– HALS: we update the columns of W and rows of H one-by-one

• Subproblem on H is NNLS, simple.
• Subproblem on W is nonconvex, difficult to solve =⇒ the main

difficulty in solving NuMF

Characterizing Nu
• Fact: the union Um,p+ ∪ Um,p+1

+ is cvx
• x ∈ Rm is Nu: x ∈ Um+ if ∃p ∈ [m] s.t. x ∈ Um,p+ ∪ Um,p+1

+ , i.e.,

x ∈ Um,p+ ∪ Um,p+1
+

(1)⇐⇒



0 ≤ x1
x1 ≤ x2

...
xp−1 ≤ xp
xp+1 ≥ xp+2

...
xm−1 ≥ xm
xm ≥ 0

⇐⇒ Upx ≥ 0,

Up =
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1
−1 1
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−1 1
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p×p︸ ︷︷ ︸

Dp×p

0p×(m−p)

0(m−p)×p D>(m−p)×(m−p)



.

That is, we characteized the membership of Nu set by a matrix-vector
product by introducing a integer parameter p.

Subproblem on W
• The Nu-characterization means subproblem on wi is a Linearly-

constrained Quadratic Program with unknown integer pi

minwi

〈wi,Bwi〉
2 − 〈c,wi〉 s.t. Upiwi ≥ 0, w>i 1m = 1. (*)

for some constant B, c, c.
• In general, pi is unknown

minwi,pi

〈wi,Bwi〉
2 − 〈c,wi〉 s.t. wi ∈ Um+ ≥ 0, w>i 1m = 1. (**)

• Solve (**) by brute force: try all pi on (*), pick the best one as p∗i .
• Speed up 1: solve (*) by accelerated Projected Gradient

– Change of variable y = Ux change (*) to another LCQP

miny
〈y,Qy〉

2 − 〈p,y〉 s.t. y ≥ 0, y>b = 1. (*′)

– Projection step: miny
1
2‖z − y‖22 s.t. y ≥ 0, y>b = 1, which

can be solved by partial Lagrangian

y∗ = min
y≥0

max
ν

1
2‖z− y‖22 + ν(y>b− 1) (#)

∗ Equality due to strong duality: U nonsingular =⇒ b > 0 =⇒
Slater’s condition.

∗ (#) has closed-form solution as soft-thresholding: [z − ν∗b]+,
where µ∗ is the optimal Lagrangian multiplier, which is the root
of the piece-wise linear equation

m∑
i=1

max
0 , zi − νi − bi

bi = 1,

which can be solved with complexity O(m) to O(m logm) by
sorting the break points zibi .

• Speed up 2: we speed up brute force on pi by dimension reduction:
make the search space for pi smaller.
– We use multi-grid: because it preserves Nu.
– PCA not work here: destroy Nu structure.

Multi-grid: dimension reduction
Def. 3. Restriction operator R is defined as x � Rx, where
R ∈ Rm1×m+ with m1 < m

R =



a b
b a b

. . . . . . . . .
b a b

b a



, a > 0, b > 0, a + 2b = 1.

Theorem 1. (Restriction preserves Nu) Let x ∈ Um,p+ and
R ∈ Rm1×m, then y = Rx ∈ Nm1,py

+ with py ∈ {bp2 + 1c, bp2c},
where Nm,p

+ = Um,p+ ∪Um,p+1
+ , which is a subset of the Nu vectors.

• Proof in 3 sentences, the core ideas:
1. Rx = Ax + Bx + Cx
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0 0 b
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0 0
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b 0
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C

2. Ax,Bx,Cx are Nu, because they are all subvector of a Nu vector.
3. The p values of Ax,Bx,Cx are at most differ by 1, so by the

Nu-characterization, their sum is Nu.

The whole algorithm
Algorithm 1: Proposed algorithm for solving NuMF
Result: W,H that solves NuMF
for k = 1, 2, . . . do

for i = 1, 2, . . . , r do
Update hi by solving a NNLS (with closed-form update);
Update wi by solving (**) using brute force search on pi;
• Restrict the data along column dimension
• Solve the coarse problem (∗∗):

– Try all pi on the coarse problem (∗). Solve it by accelerated
projected gradient, pick the best sol. as p∗i

• Prolongate pi to the original dimension
• Solve the subproblem (*) on the original fine grid with the

information of pi, no brute force is needed
end

end

Preliminary identifiability results
• Identifiability: when does solving NuMF recover the ground truth.
• Identifiability of NuMF is highly related to the support of the Nu

vectors.
Def. 4. (Strictly disjoint) Given two vectors x,y ∈ Um+
with supp(x) = [ax, bx] and supp(y) = [ay, by]. The two vectors are
called strictly disjoint if ax > by + 1.

Theorem 2. (Strictly disjoint Nu vectors) Assumes M =
W̄H̄. Solving NuMF recovers (W̄, H̄) if
1. W̄ is Nu and all the columns have strictly disjoint support.
2. H̄ ∈ Rr×n+ has n ≥ 1, ‖h̄i‖∞ > 0 for i ∈ [r].
• Strong assumptions, but they are satisfied in chemistry datasets.
• The theorem holds for r ≥ n which is uncommon for most NMF

models.

Lemma 1. (On demixing two non-fully overlapping Nu
vectors) Given two non-zero vectors x,y in Um+ with supp(x) *
supp(y) and supp(x) + supp(y). If x,y are generated by two non-
zero Nu vectors u,v as x = au + bv and y = cu + dv with non-
negative coefficients a, b, c, d , then we have either u = x, v = y
or u = y, v = x.

Theorem 3. Assumes M = W̄H̄. If r = 2, solving NuMF recov-
ers (W̄, H̄) if the col. of W̄ satisfy the conditions of Lemma 1 and
H̄ ∈ Rr×n+ is full rank.

Experiments
Toy example on MG performance

• Special-made synthetic dataset to test MG and theory.

• MG save 75% time for 2-layer. Faster than existing approaches.
• NuMF is ncvx, but we have convergence to global minima because

the dataset satisfy the identifiability assumptions.

On data with r > n (r = 8, n = 1)

• Factorization rank > data dimension, not possible for NMF.
• First three peaks in the data satisfy Theorem 2 so they are perfectly

recovered. Other peaks have overlapped support and their decom-
position is non-unique.

• Identifiability of Nu vectors with overlapped support remains open.

On GCMS data of Belgian beers

• Application of Nu in analytical chemistry.
• Other NMF models produce mixed results.

Conclusion and future works
NuMF: characterization, algorithm, theory, experimental verifications.

Future works: General identifiability theory of NuMF. NuMF with
rows of H also Nu. Log-concavity of vectors. Applications.

Funding acknowledgements
NG acknowledges the support by the European Research Council (ERC
starting grant No 679515), the Fonds de la Recherche Scientifique
- FNRS and the Fonds Wetenschappelijk Onderzoek - Vlaanderen
(FWO) underEOS project O005318F-RG47. HDS acknowledges sup-
port by NSERC of Canada.

References
[1] Andersen Man Shun Ang, Nicolas Gillis, Arnaud Vandaele, and Hans De Sterck.

Nonnegative unimodal matrix factorization.
[2] Man Shun Ang. Nonnegative Matrix and Tensor Factorizations: Models, Al-

gorithms and Applications. PhD thesis, University of Mons, 2020.

AngMSAndersen
Paper number: 1234


