Particle flow for particle filtering

Yunpeng Li ¹ Lingling Zhao ² Mark Coates ¹

¹Dept. of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada

²School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

March 22, 2016

telecommunications & signal processing laboratory

• Particle filter suffers weight degeneracy in high dimensional state space or when observations are highly informative.

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results
Motiva	ation			

- Particle filter suffers weight degeneracy in high dimensional state space or when observations are highly informative.
- Particle flow migrates, instead of samples, particles to combat particle degeneracy ¹

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results
Motiv	ation			

- Particle filter suffers weight degeneracy in high dimensional state space or when observations are highly informative.
- Particle flow migrates, instead of samples, particles to combat particle degeneracy ¹

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results
Motiv	ation			

- Particle filter suffers weight degeneracy in high dimensional state space or when observations are highly informative.
- Particle flow migrates, instead of samples, particles to combat particle degeneracy ¹

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results
Motiva	ation			

- Particle filter suffers weight degeneracy in high dimensional state space or when observations are highly informative.
- Particle flow migrates, instead of samples, particles to combat particle degeneracy ¹

importance sampling

¹F. Daum and J. Huang, "Nonlinear filters with log-homotopy, in *Proc. SPIE Signal and Data Processing of Small Targets*, Sep. 2007.

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results
Motivat	ion			

- Particle filter suffers weight degeneracy in high dimensional state space or when observations are highly informative.
- Particle flow migrates, instead of samples, particles to combat particle degeneracy ¹

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results
Motivati	ion			

• Most solutions to particle flow are computationally intractable; we need approximations in implementation.

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results
Motivat	ion			

- Most solutions to particle flow are computationally intractable; we need approximations in implementation.
- Alternative: utilize particle flow to generate a proposal distribution ^{2 3}; often computationally expensive.

²P. Bunch and S. Godsill, "Approximations of the optimal importance density using Gaussian particle flow importance sampling," *J. Amer. Statist. Assoc.*, 2015.

³S. Reich, "A guided sequential Monte Carlo method for the assimilation of data into stochastic dynamical systems," in *Recent Trends in Dynamical Systems*, 2013.

- Most solutions to particle flow are computationally intractable; we need approximations in implementation.
- Alternative: utilize particle flow to generate a proposal distribution ² ³; often computationally expensive.
- Proposed method: construct particle flows with the invertible mapping property to efficiently evaluate importance weights.

²P. Bunch and S. Godsill, "Approximations of the optimal importance density using Gaussian particle flow importance sampling," *J. Amer. Statist. Assoc.*, 2015.

³S. Reich, "A guided sequential Monte Carlo method for the assimilation of data into stochastic dynamical systems," in *Recent Trends in Dynamical Systems*, 2013.

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results
Probler	n statemen	t		

A nonlinear filtering task with the following model:

$$x_k = g(x_{k-1}, v_k)$$
$$z_k = h(x_k, w_k)$$

- x_k the unobserved state at time step k
- z_k the observation
- v_k, w_k noise terms

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results
Proble	m statemen	t		

A nonlinear filtering task with the following model:

 $egin{aligned} & x_k = g(x_{k-1}, v_k) \ & z_k = h(x_k, w_k) \end{aligned}$ the unobserved state at time step k z_k the observation v_k, w_k noise terms

Task: track the marginal posterior distribution $p(x_k|z_1,...,z_k)$.

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results
Particle	flow			

- The particle flow process is modeled as a stochastic process η_{λ} for $\lambda \in [0, 1]$.
- The distribution of η₀ is the prior distribution of x_k and the distribution of η₁ is the posterior distribution of x_k.

The trajectory of η_{λ}^{i} in realization *i* follows $\frac{d\eta_{\lambda}^{i}}{d\lambda} = \zeta(\eta_{\lambda}^{i}, \lambda)$,

governed by the Fokker-Planck equation with zero diffusion:

$$\frac{\partial \textit{p}(\eta_{\lambda}^{i},\lambda)}{\partial \lambda} = -\mathsf{div}(\textit{p}(\eta_{\lambda}^{i},\lambda)\zeta(\eta_{\lambda}^{i},\lambda))$$

Zero-diffusion particle flow

The trajectory of η_{λ}^{i} in realization *i* follows $\frac{d\eta_{\lambda}^{i}}{d\lambda} = \zeta(\eta_{\lambda}^{i}, \lambda)$, governed by the Fokker-Planck equation with zero diffusion:

$$\frac{\partial \boldsymbol{p}(\eta^i_\lambda,\lambda)}{\partial \lambda} = -\mathsf{div}(\boldsymbol{p}(\eta^i_\lambda,\lambda)\zeta(\eta^i_\lambda,\lambda))$$

• Different flow assumptions:

incompressible flow, exact flow with zero diffusion, etc.

Zero-diffusion particle flow

The trajectory of η_{λ}^{i} in realization *i* follows $\frac{d\eta_{\lambda}^{i}}{d\lambda} = \zeta(\eta_{\lambda}^{i}, \lambda)$, governed by the Fokker-Planck equation with zero diffusion:

$$rac{\partial oldsymbol{p}(\eta^i_\lambda,\lambda)}{\partial \lambda} = - \mathsf{div}(oldsymbol{p}(\eta^i_\lambda,\lambda)\zeta(\eta^i_\lambda,\lambda))$$

- Different flow assumptions: incompressible flow, exact flow with zero diffusion, etc.
- Prior and posterior are Gaussian: exact Daum-Huang (EDH) filter⁴, Localized exact DH (LEDH) filter ⁵.

$$\zeta(\eta^i_{\lambda},\lambda) = A^i(\lambda)\eta^i_{\lambda} + b^i(\lambda)$$
 (for LEDH)

⁴F. Daum, J. Huang, and A. Noushin, "Exact particle flow for nonlinear filters," in Proc. SPIE Conf. Signal Proc., Sensor Fusion, Target Recog., Orlando, FL, USA, Apr. 2010.

⁵T. Ding and M. J. Coates, "Implementation of the Daum-Huang exact-flow particle filter," in *Proc. IEEE Statistical Signal Processing Workshop (SSP)*, Ann Arbor, MI, USA, Aug. 2012.

Importance weight calculation

$$w_k^i \propto rac{p(\eta_1^i | x_{k-1}^i) p(z_k | \eta_1^i)}{p(\eta_1^i | x_{k-1}^i; z_k)} w_{k-1}^i$$

- x_{k-1}^i the *i*-th particle at time step k-1
 - \mathbf{z}_k the observation at time step k
 - η_1^i the *i*-th particle after the flow

Importance weight calculation

$$w_k^i \propto rac{p(\eta_1^i | x_{k-1}^i) p(z_k | \eta_1^i)}{p(\eta_1^i | x_{k-1}^i; z_k)} w_{k-1}^i$$

- x_{k-1}^i the *i*-th particle at time step k-1
 - z_k the observation at time step k
 - η_1^i the *i*-th particle after the flow
 - η_0^i the *i*-th particle before the flow

invertible mapping

$$\eta_1^i \neq \eta_1^j \iff \eta_0^i \neq \eta_0^j$$

Importance weight calculation

$$w_k^i \propto rac{p(\eta_1^i | x_{k-1}^i) p(z_k | \eta_1^i)}{p(\eta_1^i | x_{k-1}^i; z_k)} w_{k-1}^i$$

invertible mapping
$$\eta_1^i \neq \eta_1^j \iff \eta_0^i \neq \eta_0^j$$

 $\begin{array}{l} x_{k-1}^i & \mbox{the i-th particle at time step $k-1$} \\ z_k & \mbox{the observation at time step k} \\ \eta_1^i & \mbox{the i-th particle after the flow} \\ \eta_0^i & \mbox{the i-th particle before the flow} \end{array}$

$$p(\eta_1^i | x_{k-1}^i; z_k) = p(\eta_0^i | x_{k-1}^i; z_k) = p(\eta_0^i | x_{k-1}^i)$$

Algorithm 1 Particle flow particle filter (LEDH)

- 1: Initialization.
- 2: for $k=1\ to\ TotalTimeStep\ do$
- 3: for i = 1 to NumParticle do
- 4: calculate $\bar{\eta}_0^i = g(x_{k-1}^i, 0)$

5: sample
$$\eta_0^i = g(x_{k-1}^i, v_k)$$

6: for
$$\lambda = [0, \lambda_1, \lambda_2, \dots, 1)$$
 do

7: propagate
$$\bar{\eta}^i_{\lambda}$$
 to obtain $A^i(\lambda)$ and $b^i(\lambda)$

- 8: propagate η^i_{λ} using $A^i(\lambda)$ and $b^i(\lambda)$
- 9: end for

10:
$$w_k^i = \frac{p(\eta_1^i | x_{k-1}^i) p(z_k | \eta_1^i)}{p(\eta_0^i | x_{k-1}^i)} w_{k-1}^i$$

- 11: end for
- 12: end for

Algorithm 2 Particle flow particle filter (LEDH)

1. Initialization. 2: for k = 1 to TotalTimeStep do for i = 1 to NumParticle do 3: calculate $\bar{\eta}_0^i = g(x_{k-1}^i, 0)$ 4: sample $\eta_0^i = g(x_{k-1}^i, v_k)$ 5: for $\lambda = [0, \lambda_1, \lambda_2, \dots, 1)$ do 6: propagate $\bar{\eta}^i_{\lambda}$ to obtain $A^i(\lambda)$ and 7: $b'(\lambda)$ propagate η^i_{λ} using $A^i(\lambda)$ and $b^i(\lambda)$ 8. end for 9:

10:
$$w_k^i = \frac{p(\eta_1^i | x_{k-1}^i) p(z_k | \eta_1^i)}{p(\eta_0^i | x_{k-1}^i)} w_{k-1}^i$$

- 11: end for
- 12: end for

Algorithm 3 Particle flow particle filter (LEDH)

- 1: Initialization.
- 2: for $k=1\ to\ TotalTimeStep\ do$
- 3: for i = 1 to NumParticle do

4: calculate
$$\bar{\eta}_0^i = g(x_{k-1}^i, 0)$$

5: sample
$$\eta_0^i = g(x_{k-1}^i, v_k)$$

6: for
$$\lambda = [0, \lambda_1, \lambda_2, \dots, 1)$$
 do

7: propagate
$$\bar{\eta}^i_{\lambda}$$
 to obtain $A^i(\lambda)$ and $b^i(\lambda)$

- 8: propagate η^i_{λ} using $A^i(\lambda)$ and $b^i(\lambda)$
- 9: end for

10:
$$w_k^i = \frac{p(\eta_1^i | x_{k-1}^i) p(z_k | \eta_1^i)}{p(\eta_0^i | x_{k-1}^i)} w_{k-1}^i$$

- 11: end for
- 12: **end for**

Algorithm 4 Particle flow particle filter (LEDH)

- 1: Initialization.
- 2: for $k=1\ to\ TotalTimeStep\ do$
- 3: for i = 1 to NumParticle do

4: calculate
$$\bar{\eta}_0^i = g(x_{k-1}^i, 0)$$

5: sample
$$\eta_0^i = g(x_{k-1}^i, v_k)$$

6: for
$$\lambda = [0, \lambda_1, \lambda_2, \dots, 1)$$
 do

7: propagate
$$\bar{\eta}^i_{\lambda}$$
 to obtain $A^i(\lambda)$ and $b^i(\lambda)$

- 8: propagate η^i_{λ} using $A^i(\lambda)$ and $b^i(\lambda)$
- 9: end for

10:
$$w_k^i = \frac{p(\eta_1^i | x_{k-1}^i) p(z_k | \eta_1^i)}{p(\eta_0^i | x_{k-1}^i)} w_{k-1}^i$$

- 11: end for
- 12: **end for**

- 4 targets, constant velocity model, 16×1 state vector.
- 25 acoustic amplitude sensors in a 40m × 40m grid.
- Additive measurement model:

$$ar{z}^{s}(x_{k}) = \sum_{m=1}^{NumTarget} rac{A}{||(x_{k}^{(m)},y_{k}^{(m)})^{T} - \zeta^{s}||^{\kappa} + d_{0}}$$

Small measurement noise.

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results
Trackin	g demo			

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results
Trackin	g demo			

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results
Trackin	g demo			

Performance evaluation

optimal mass transfer (OMAT) metric

$$d_p(X, Y) = \left(\frac{1}{M} \min_{\pi \in \Pi} \sum_{i=1}^M d(x_i, y_{\pi(i)})^p\right)^{1/p}$$

- LEDH localized exact Daum and Huang filter
 - EDH exact Daum and Huang filter
- GPFIS Gaussiam particle flow importance sampling
 - EKF extended Kalman filter
 - BPF bootstrap particle filter

500 particles used in all algorithms except BPF.

- M number of targets
- d() Euclidean distance
 - Π the set of possible permutations of 1,2,...,M

- - Average error, effective sample size, and execution time per step.
 - Results are produced with an Intel i7 4770K 3.50GHz CPU.
 - 500 particles used in all algorithms except BPF.

Algorithm	Avg. OMAT	Avg. ESS	Avg. Execution time
PF-PF (LEDH)	0.72	29.3	1.45
PF-PF (EDH)	2.81	29.8	0.01
LEDH	2.05	N/A	1.44
EDH	2.52	N/A	0.01
GPFIS	2.20	14.2	124
EKF	5.73	N/A	0.002
BPF (10 ⁵ particles)	2.18	2.13	0.52
BPF (10 ⁶ particles)	1.10	7.43	5.29

- PF-PF particle flow particle filtering
- LEDH localized exact Daum and Huang filter
- EDH exact Daum and Huang filter

- GPFIS Gaussiam particle flow importance sampling
 - **EKE** extended Kalman filter
 - BPF bootstrap particle filter

- Proposed a particle filtering algorithm that uses particle flow to construct the proposal distribution.
- Proved that the applied particle flows are invertible mappings, so we can evaluate importance weights in a simple fashion.
- Proposed algorithm retains the statistical consistency of particle filter, and acquires desirable properties of particle flow.

Outline	Introduction	Previous Work	Proposed Method	Experiment and Results

Thank you!