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xk the unobserved state at time step k

zk the observation
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Particle flow

The particle flow process is modeled as a stochastic process
ηλ for λ ∈ [0, 1].

The distribution of η0 is the prior distribution of xk and the
distribution of η1 is the posterior distribution of xk .
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Zero-diffusion particle flow

The trajectory of ηiλ in realization i follows
dηiλ
dλ

= ζ(ηiλ, λ),

governed by the Fokker-Planck equation with zero diffusion:

∂p(ηiλ, λ)

∂λ
= −div(p(ηiλ, λ)ζ(ηiλ, λ))

Different flow assumptions:
incompressible flow, exact flow with zero diffusion, etc.

Prior and posterior are Gaussian: exact Daum-Huang (EDH)
filter, Localized exact DH (LEDH) filter.

ζ(ηiλ, λ) = Ai (λ)ηiλ + bi (λ) (for LEDH)
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Particle flow with invertible mapping

Algorithm 1 Particle flow particle filter (LEDH)

1: Initialization.
2: for k = 1 to TotalTimeStep do
3: for i = 1 to NumParticle do
4: calculate η̄i0 = g(x ik−1, 0)

5: sample ηi0 = g(x ik−1, vk)
6: for λ = [0, λ1, λ2, . . . , 1) do
7: propagate η̄iλ to obtain Ai (λ) and

bi (λ)
8: propagate ηiλ using Ai (λ) and bi (λ)
9: end for

10: w i
k =

p(ηi1|x ik−1)p(zk |ηi1)

p(ηi0|x ik−1)
w i
k−1

11: end for
12: end for

xi
k−1

{xi
k−1

}
Np

i=1
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Experiment setup
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4 targets, constant velocity model, 16× 1 state vector.

25 acoustic amplitude sensors in a 40m x 40m grid.

Additive measurement model:

z̄s(xk ) =

NumTarget∑
m=1

A

||(x(m)
k , y

(m)
k )T − ζs ||κ + d0

Small measurement noise.
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Performance evaluation
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PF-PF (EDH)

LEDH

EDH

GPFIS

EKF

BPF (100K)

BPF (1M)

PF-PF particle flow particle filtering

LEDH localized exact Daum and Huang
filter

EDH exact Daum and Huang filter

GPFIS Gaussiam particle flow importance
sampling

EKF extended Kalman filter

BPF bootstrap particle filter

500 particles used in all
algorithms except BPF.

optimal mass transfer (OMAT) metric

dp(X ,Y ) = (
1

M
min
π∈Π

M∑
i=1

d(xi , yπ(i))p)1/p

M number of targets

d() Euclidean distance

Π the set of possible permutations
of 1,2,. . . ,M
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Performance evaluation

Average error, effective sample size, and execution time per step.

Results are produced with an Intel i7 4770K 3.50GHz CPU.

500 particles used in all algorithms except BPF.

Algorithm Avg. OMAT Avg. ESS Avg. Execution time

PF-PF (LEDH) 0.72 29.3 1.45
PF-PF (EDH) 2.81 29.8 0.01

LEDH 2.05 N/A 1.44
EDH 2.52 N/A 0.01
GPFIS 2.20 14.2 124
EKF 5.73 N/A 0.002

BPF (105 particles) 2.18 2.13 0.52
BPF (106 particles) 1.10 7.43 5.29

PF-PF particle flow particle filtering

LEDH localized exact Daum and Huang filter

EDH exact Daum and Huang filter

GPFIS Gaussiam particle flow importance sampling

EKF extended Kalman filter

BPF bootstrap particle filter
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Conclusion

Proposed a particle filtering algorithm that uses particle flow
to construct the proposal distribution.

Proved that the applied particle flows are invertible mappings,
so we can evaluate importance weights in a simple fashion.

Proposed algorithm retains the statistical consistency of
particle filter, and acquires desirable properties of particle flow.
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Thank you!
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