Few-shot Image Classification with Multi-facet Prototypes
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Introduction

* Few-shot learning aims to recognize unseen 1images of new
classes with only a few training examples.

* A central challenge 1s that the available training examples are
normally insufficient to determine which visual features are
most characteristic of the considered categories.

Motivation

* The importance of each facet differs from category to
category.

Important facet

color

shape

corkscrew

desert

* Iti1s possible to predict facet importance from a pre-trained
embedding of the category names.
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Word embedding >

Class Name Embeddings

* For each class ¢, we sample 1000 sentences from the May
2016 English Wikipedia dump;

* we replace the name of the class by [MASK], and take the
sentence as the input to BERT. The class name embedding can
be obtained from the output of the BERT.
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Facet Identification

Our aim 1s to group the coordinates of the visual feature vectors fg(x),
such that coordinates from the same group intuitively refer to similar
aspects.

* Given a visual feature vector fg(x), we define X4, ...,

X as the set of
coordinate indices of fg(x) of F different facets.

We define al as the importance of the it" coordinate for the class c,
the formula 1s as below:
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We construct mXn matrix A by repeating the above computation for m
episodes, where each time n classes are sampled.

We computed the Kendall 7 statistic between the it"
A. Let us write e;; € [—1,1] for the resulting value.
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We use average-link agglomerative hierarchical clustering to partition
the set {1, ..., n} into the facets X5, ..., Xz, where the values e(i, j) are
used to measure similarity.

Similarity Computation

Given a word embedding n® for class ¢, we introduce a facet-
importance generation network g,, which maps n® onto an F-
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Experiments

* Ablation study of different word embeddings

Method Backbone  Word Embeddings 5-way 5-shot
ProtoNet ResNet-10 None 73.24 4= 0.63
Ours(ProtoNet)  ResNet-10 GloVe 74.10 £ 0.61
Ours(ProteNet)  ResNet-10 BERT 75.24 + 0.76

* The mean accuracies (%) with a 95% confidence
interval on the minilmageNet dataset

Method Backbone S-way 1-shot 5-way S-shot
MAML [2] Conv-64 48.70 = 1.75 63.15 £ 0.91
Reptile [18] Conv-64 47.07 =0.26  62.74 £ 0.37
LEO [19] WRN-28 61.76 =0.08  77.59 = 0.12
MTL [20] ResNet-12  61.20 £ 1.80  75.50 4 0.80
MetaOptNet-SVM [21] ResNet-12  62.64 £+ 0.61 78.63 = 0.46
Matching Net [7] Conv-64 43.56 £ 0.84 55.31 =0.73
ProtoNet [J] Conv-64 4942 +£0.78  68.20 = 0.66
RelationNet [4] Conv-64 50.44 +=0.82 65.32+£0.70
ProtoNet [I] ResNet-12  56.52 045 7428 £ 0.20
TADAM [22] ResNet-12  58.50 =0.30  76.70 = 0.38
AM3(ProtoNet, BERT) ResNet-12  62.11 =20.39  74.72 = 0.64
AM?3(ProtoNet, GloVe) ResNet-12 6243 = 0.80  74.87 = 0.65
AM3(ProtoNet++) [10] ResNet-12  65.21 =0.49  75.20 = 0.36
TRAML(ProtoNet) [12] ResNet-12  60.31 =048  77.94 = 0.57
DSN-MR [23] ResNet-12  64.60 == 0.48  79.51 4 0.50
DeepEMD [24] ResNet-12  65.91 = 0.82 82.41 += 0.56
FEAT [6] ResNet-12 66.78 82.05

Ours(ProtoNet) ResNet-12  63.21 =2 0.37  77.84 &= 0.64
Ours(FEAT) ResNet-12  67.24 = 0.58  82.51 £ 0.66

dimensional vector:
= ge(n°)
* We obtain the final facet importance weights by applying a softmax
layer:

(s, ...,nk) = SOFTMAX(g,(n°))
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* The distance between a query 1mage g and the prototype of class ¢ as a
welghted sum of facet-speciﬁc distances, as follow:

fdist(qg,c) = 27] [Ifo (@) — vElI3

» Rather than using fdist(q, c) d1rect1y, we combine fdist(q, c) with the
standard Euclidean distance, as used in ProtoNet, as follows:

dist(q,c) = |fe(q) —v¢| + A - fdist(q, c)

* The mean accuracies (%) with a 95% confidence
interval on the CUB dataset

Method Backbone 5-way 1-shot 5-way 5-shot
MAML Conv-64 55.92 4+ 0.95 72.09 = 0.76
Matching Net Conv-64 61.16 =0.89  72.86 == 0.70
ProtoNet Conv-64 51.31 =091 70.77 = 0.69
RelationNet Conv-64 6245 098 76.11 = 0.69
Baseline++ Conv-64 60.53 =0.83  79.34 = 0.61
SAML [25] Conv-64 69.35 £ 0.22 81.37£0.15
DN4 [26] Conv-64 53.15+0.84  81.90 == 0.60
Ours(ProtoNet)  Conv-64 69.52 +0.76 82.34 + 0.66




