

A*I2R

ROBUST DOMAIN-FREE DOMAIN GENERALIZATION WITH CLASS-AWARE ALIGNMENT

Zhang Wenyu, Mohamed Ragab, Ramon Sagarna

Machine Intellection Department, Institute for Infocomm Research

Nanyang Technological University

IEEE ICASSP 2021, 6-11 June

Outline

Motivation	Page 3
Proposed Method: DGDG	Page 7
Datasets	Page 13
Experiments and Results	Page 14

Motivation

- Deep neural network performance is often reliant on the assumption that train and test sample distributions are the same
- Data collection is often resource-constrained, and out-of-distribution samples can be present at test-time
 - Practical application examples: new road conditions for self-driving car, new operating conditions for machinery, new users of device
- Model robustness is needed to avoid compromising the accuracy of trained models at deployment in the wild

Motivation: Domain Generalization

- Domain: a data generation regime
- Domain generalization aims to learn a robust model from source/training domains that can directly generalize to new target/testing domains
 - No target samples used at training (difference from domain adaptation)

Source domains

Source domain labels

Target domain

(Sketch) Unknown target domain label

Motivation: Domain-Free Domain Generalization

- Domain-free: no domain labels i.e. unable to group source samples by domain labels during training.
- Domain labels may be unavailable in practice, and dataset labels cannot replace domain labels when samples of a dataset are drawn from a mixture of domains

Source domains

Unknown source domain labels

Target domain

(Sketch) Unknown target domain label

Problem Setup and Notations

Setup for classification tasks:

- For each domain *D*, samples $(x_i^{(D)}, y_i^{(D)})$ are drawn from a fixed distribution $(X^{(D)}, Y^{(D)}) \sim P^{(D)}$, y_i is one-hot vector of true class label in *C* classes
- For model *f* parameterized by θ , soft labels or vector of predicted class probabilities $p_i = softmax(f(x_i; \theta))$

Goal:

• Learn a robust model from source domains that can generalize to new unseen target domains, without source domain labels

Objective function for batch *B*: $L = \ell_{ce} + \alpha \ell_{align}$

• Samples from the same class to have similar class relationships regardless of domains.

Mask superficial observations

- Superficial observations (e.g. backgrounds, styles in images) can lead to overfitting to training data
- Perturb inputs so that trained model is more robust to variations in superficial observations

Mask superficial observations

1. Rank pixels by SmoothGrad saliency score

Vanilla saliency score: $g(x,c) = \left(\frac{\partial f(x,\theta)[c]}{\partial x}\right)^2$

SmoothGrad saliency score: Averages n replicates of g(x, c)where Gaussian noise is added to x in each replicate

Shuffle pixels

Mask superficial observations

- 1. Rank pixels by SmoothGrad saliency score
- 2. Sample $q \sim Unif(0, qMax)$
- 3. Pixels with saliency score below the q^{th} percentile are shuffled

In each batch, augment m% of samples.

(m = 50, qMax = 70 in experiments)

Experiments: Datasets

Bearings (vibration sensor signals)

- 10 fault classes
- 8 operating conditions: 4 loading torques x
 2 bearing locations

HHAR (motion sensor signals)

- 6 human activity classes
- 9 users

PACS (images)

- 7 classes
- 4 art styles

Experiments: Competing Methods

TrainAll

Baseline with cross entropy loss

MMLD

• Estimates source domain labels using convolutional feature statistics, and aligns the domains with a discriminator network

Matsuura, Toshihiko and Harada, Tatsuya. "Domain Generalization Using a Mixture of Multiple Latent Domains." AAAI (2020).

RSC

• Zeros out penultimate-layer feature representations associated with the highest gradient in the final classification layer

Huang, Zeyi, Haohan Wang, E. Xing and Dong Huang. "Self-Challenging Improves Cross-Domain Generalization." *ECCV* (2020)

• Bearings

Target	Accuracy (%)				
	TrainAll	RSC	MMLD	DFDG	DFDG+RSC
А	52.33	68.43	65.70	66.60	68.23
В	90.50	91.10	95.37	89.30	90.90
С	92.90	97.60	89.33	89.67	92.47
D	74.97	77.73	65.87	77.73	77.97
E	70.73	70.33	64.20	73.40	74.77
F	88.53	86.40	79.03	91.50	90.23
G	87.20	90.20	86.83	91.40	94.30
Н	85.20	90.50	75.53	85.30	88.37
Avg	80.30	84.04	77.73	83.13	84.65

• HHAR

Target	Accuracy (%)			
	TrainAll	RSC	MMLD	DFDG
А	43.27	41.28	45.82	36.76
В	48.91	44.54	60.43	70.91
С	49.15	47.68	46.73	54.63
D	45.73	52,23	49.93	62.60
E	46.59	44.80	52.88	66.40
F	41.98	43.02	46.95	69.28
G	30.36	29.99	43.90	60.64
Н	54.84	57.75	52.38	47.30
Ι	40.86	40.59	47.19	55.07
Avg	45.15	45.23	49.58	58.18

• PACS

Target	Accuracy (%)			
	TrainAll	RSC	MMLD	DFDG
Art Cartoon Photo Sketch	78.73 74.30 94.55 76.19	80.37 76.84 94.99 74.40	78.99 77.06 95.41 62.56	79.23 75.84 95.45 77.87
Avg	80.94	81.65	78.51	82.10

Experiments: Ablation Studies

• Bearings

Saliency Map	Avg	су (%)	
Vanilla gradient SmoothGrad	80.7 83.4	77 42	
Regularization	Masking		Avg Accuracy (%
α	m	qMax	-
-	-	-	79.75
0.01	-	-	80.21
0.1	-	-	79.97
-	33	30	83.21
-	50	70	83.42

Experiments: Ablation Studies

DFDG w/o mask

DFDG

w/o

align

Less separation

 $\begin{array}{c} Y \\ X \\ E \\ X \\ E \\ X \\ F \\ X \\ F \\ X \\ G \\ X \\ H \end{array}$

Domains may be individually clustered

Summary

Proposed DFDG method

- Aligns class relationships of source samples
- Masks superficial observations from source samples
- ☑ Model-agnostic
- Does not require domain labels for training
- ☑ Attains better performance over baseline and competing methods for both time series sensor and image classification tasks
 - Complements existing method (RSC) to achieve best performance on Bearings dataset

Selected References

Mancini, Massimiliano, S. R. Bulò, B. Caputo and E. Ricci. "Best Sources Forward: Domain Generalization through Source-Specific Nets." *25th IEEE International Conference on Image Processing (ICIP)* (2018): 1353-1357.

T. S. Talagala, R. J. Hyndman, and G. Athanasopoulos, "Meta-learning how to forecast time series," *Tech. Rep., Monash University, Dept. of Econometrics and Business Statistics* (2018).

H. Li, S. J. Pan, S. Wang, and A. C. Kot, "Domain generalization with adversarial feature learning," *ICCV* (2018).

Dou, Qi, Daniel Coelho de Castro, K. Kamnitsas and B. Glocker. "Domain Generalization via Model-Agnostic Learning of Semantic Features." *NeurIPS* (2019).

D. Li, J. Zhang, Y. Yang, C. Liu, Y-Z. Song, and T. M.Hospedales, "Episodic training for domain generalization," *ICCV* (2019).

Selected References

Huang, Zeyi, Haohan Wang, E. Xing and Dong Huang. "Self-Challenging Improves Cross-Domain Generalization." *ECCV (2020).*

Matsuura, Toshihiko and Harada, Tatsuya. "Domain Generalization Using a Mixture of Multiple Latent Domains." AAAI (2020).

D. Smilkov, N. Thorat, B. Kim, F. Viegas, and M. Wattenberg, "Smoothgrad: removing noise by adding noise," *Workshop on Visualization for Deep Learning, ICML* (2017).

Smith, W. and R. Randall. "Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study." *Mechanical Systems and Signal Processing* 64 (2015): 100-131.

Garrett Wilson, Janardhan Rao Doppa, and Diane J. Cook, "Multi-source deep domain adaptation with weak supervision for time-series sensor data," *KDD* (2020).

THANK YOU

www.a-star.edu.sg