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Motivation

• Deep neural network performance is often reliant on the assumption that train 
and test sample distributions are the same

• Data collection is often resource-constrained, and out-of-distribution samples 
can be present at test-time

• Practical application examples: new road conditions for self-driving car, 
new operating conditions for machinery, new users of device

• Model robustness is needed to avoid compromising the accuracy of trained 
models at deployment in the wild
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Motivation: Domain Generalization

• Domain: a data generation regime

• Domain generalization aims to learn a robust model from source/training 
domains that can directly generalize to new target/testing domains

• No target samples used at training (difference from domain adaptation)
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Motivation: Domain-Free Domain Generalization

• Domain-free: no domain labels i.e. unable to group source samples by domain 
labels during training.

• Domain labels may be unavailable in practice, and dataset labels cannot 
replace domain labels when samples of a dataset are drawn from a mixture of 
domains
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Problem Setup and Notations

Setup for classification tasks:

• For each domain 𝐷, samples 𝑥𝑖
𝐷
, 𝑦𝑖

𝐷
are drawn from a fixed distribution 

𝑋 𝐷 , 𝑌 𝐷 ~𝑃(𝐷), 𝑦𝑖 is one-hot vector of true class label in 𝐶 classes

• For model 𝑓 parameterized by 𝜃, soft labels or vector of predicted class 

probabilities 𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑓 𝑥𝑖; 𝜃

Goal:

• Learn a robust model from source domains that can generalize to new unseen 
target domains, without source domain labels
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Proposed Method: DFDG
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Proposed Method: DFDG

8

Objective function for batch 𝐵:
𝐿 = ℓ𝑐𝑒 + 𝛼ℓ𝑎𝑙𝑖𝑔𝑛

• Samples from the same class to 
have similar class relationships 
regardless of domains.

Inputs Soft labels

Model
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Proposed Method: DFDG
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Objective function for batch 𝐵:
𝐿 = ℓ𝑐𝑒 + 𝛼ℓ𝑎𝑙𝑖𝑔𝑛

Cross entropy loss

ℓ𝑐𝑒 = −
1

𝐵


𝑖∈𝐵

𝑦𝑖
𝑇log(𝑝𝑖)

Class relationship alignment loss:

ℓ𝑎𝑙𝑖𝑔𝑛 =

𝑐=1

𝐶
1

|𝐵 𝑐 |


𝑖∈𝐵(𝑐)

𝑝(𝑖) − 𝜇(𝑐)
2

2

where
𝐵 𝑐 = {𝑖|𝑖 ∈ 𝐵, [1,⋯ , 𝐶]𝑦𝑖= 𝑐}

𝜇 𝑐 =
1

|𝐵 𝑐 |


𝑖∈𝐵(𝑐)

𝑝(𝑖)

Inputs Soft labels

Model

Cluster centroid
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Proposed Method: DFDG
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Mask superficial observations

• Superficial observations (e.g. 
backgrounds, styles in images) 
can lead to overfitting to training 
data

• Perturb inputs so that trained 
model is more robust to 
variations in superficial 
observations

Inputs Soft labels

Model
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Proposed Method: DFDG
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Mask superficial observations

1. Rank pixels by SmoothGrad
saliency score

Inputs Soft labels

Model
Vanilla saliency score:

𝑔 𝑥, 𝑐 =
𝜕𝑓 𝑥, 𝜃 𝑐

𝜕𝑥

2

SmoothGrad saliency score:

Averages 𝑛 replicates of 𝑔(𝑥, 𝑐)
where Gaussian noise is added 
to 𝑥 in each replicate

Saliency score
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Proposed Method: DFDG
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Mask superficial observations

1. Rank pixels by SmoothGrad
saliency score

2. Sample 𝑞~𝑈𝑛𝑖𝑓 0, 𝑞𝑀𝑎𝑥

3. Pixels with saliency score below 
the 𝑞𝑡ℎ percentile are shuffled

In each batch, augment 𝑚% of 
samples.

(𝑚 = 50, 𝑞𝑀𝑎𝑥 = 70 in experiments)

Inputs Soft labels

Model

Shuffle pixels
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Experiments: Datasets

Bearings (vibration sensor signals)

• 10 fault classes

• 8 operating conditions: 4 loading torques x 
2 bearing locations

HHAR (motion sensor signals)

• 6 human activity classes

• 9 users

PACS (images)

• 7 classes

• 4 art styles
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Experiments: Competing Methods

TrainAll

• Baseline with cross entropy loss

MMLD

• Estimates source domain labels 
using convolutional feature 
statistics, and aligns the domains 
with a discriminator network

RSC

• Zeros out penultimate-layer feature 
representations associated with the 
highest gradient in the final 
classification layer
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Experiments: Generalization Performance

• Bearings
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Experiments: Generalization Performance

16

TrainAll

DFDG
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Experiments: Generalization Performance
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TrainAll

DFDG

clustering by 
bearing location
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Experiments: Generalization Performance

• HHAR
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Experiments: Generalization Performance

• PACS
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Experiments: Ablation Studies

• Bearings
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Experiments: Ablation Studies
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Summary

Proposed DFDG method

• Aligns class relationships of source samples

• Masks superficial observations from source samples

 Model-agnostic

 Does not require domain labels for training

 Attains better performance over baseline and competing methods for both 
time series sensor and image classification tasks

 Complements existing method (RSC) to achieve best performance on 
Bearings dataset
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