

UNIVERSITÀ DEGLI STUDI DI MILANO

Acute Lymphoblastic Leukemia Detection Based on Adaptive Unsharpening and Deep Learning

Angelo Genovese*, Mahdi S. Hosseini⁺, Vincenzo Piuri^{*}, Konstantinos N. Plataniotis[‡], Fabio Scotti^{*}

*Università degli Studi di Milano Dep. of Computer Science Milano (MI), Italy ⁺University of New Brunswick Dep. of Electrical & Computer Engineering Fredericton, NB, Canada ‡University of Toronto Dep. of Electrical & Computer Engineering Toronto, ON, Canada

Outline

- Introduction
 - \circ Acute Lymphoblastic Leukemia (ALL)
 - \circ Computer Aided Diagnosis (CAD)
 - $\odot\,$ Deep Learning (DL) for ALL
- Proposed method
- Experimental results

 Quantitative analysis
 Qualitative analysis
- Conclusions

Acute Lymphoblastic Leukemia (ALL)

Disease

Affects the blood cells, rapidly spreads
Fatal consequences if left untreated

- Diagnosis
 - Experienced pathologist manually inspects white cells in peripheral blood samples identifying the cells with the typical blast morphology
 - Lymphoblasts: white cells with an altered morphology
 - Normally present in the bone marrow
 - An increased number of lymphoblasts in peripheral blood can be associated with ALL

Computer Aided Diagnosis (CAD)

- Partially automate

 Lymphoblast detection process
 Image processing
 Machine Learning (ML)
- Three main categories
 - Handcrafted feature extraction and shallow ML classifier
 - Handcrafted feature extraction and Deep Learning (DL)
 - \circ Pure DL

Deep Learning (DL) for ALL

- Deep Learning
 - Automatically learns data representations
 No need for handcrafted feature extraction
 Higher accuracy
- State of the art of DL for ALL
 - $\,\circ\,$ Strive towards higher classification accuracy
 - More efficient learning procedures
 - Original network architectures
 - However, no method deals with ALL data analysis
 - No focus or quality analysis
 - No preprocessing algorithm

Proposed Method (1/2)

- First DL-based method for lymphoblast detection that analyzes ALL data
 - \circ Focus quality estimation
 - Adaptive unsharpening
 - White blood cell classification using CNNs
 - ➤ 0: «normal»
 - 1: «lymphoblast»

Normal Lymphoblast

Proposed Method (2/2)

- A) Image registration
- B) Focus quality estimation and adaptive image unsharpening
- C) Shallow CNNs for tuning of adaptive image unsharpening
- D) Final adaptive image unsharpening
- E) Deep CNN classification

Image Registration

- Color normalization and grayscale conversion
- $M_{thresh} =$ Otsu's binarization
- *M_{fcm}* = Fuzzy C-means clustering
 O Discard largest class (background)
- $M = M_{thresh} + M_{fcm}$ • Extraction of largest CC
- Active contour refinement
- Ellipse fitting
 - \circ Center of ellipse: c_x , c_y
 - \circ Axes of ellipse: a_{max} , a_{min}
- Extraction of ROI centered on c_x , c_y , with size $1.5 \cdot a_{min}$

Focus Quality Estimation and Adaptive Image Unsharpening (1/2)

- Estimation of focus quality
 - FQPath method
 - > Decomposes the input image using a visual sensitivity-like FIR filter corresponding to the out-of-focus lens
 - > Extracts high order statistical moment features to quantize the image sharpness level
 - \blacktriangleright Vector of focus qualities $\mathbf{f} = [f_1, f_2, \dots, f_N]$
- Estimation of data bias
 - \circ Correlation coefficient between **f** and vector of labels **l**:

 $b = corrcoeff(\mathbf{f}, \mathbf{l})$

 \circ Significant data bias: |b| > 50%

M. S. Hosseini, J. A. Z. Brawley-Hayes, Y. Zhang, L. Chan, K. N. Plataniotis and S. Damaskinos, "Focus Quality Assessment of High-Throughput Whole Slide Imaging in Digital Pathology," in IEEE Transactions on Medical Imaging, vol. 39, no. 1, pp. 62-74, Jan. 2020, doi: 10.1109/TMI.2019.2919722.

Focus Quality Estimation and Adaptive Image Unsharpening (2/2)

• Adaptive unsharpening

- \circ Improving focus quality for each image until it reaches the threshold $th_{unsharp}$
 - > The threshold is uniquely computed *for each training* subset
 - Determines which focus the images should have

Unsharp masking

- \succ Gaussian kernel with standard deviation σ_i
- $\succ \sigma_i$ is adaptively estimated for each image to reach the focus quality $th_{unsharp}$
- $\succ \sigma_i = \arg\min_{\sigma} (f_i th_{unsharp})$
- $\,\circ\,$ Threshold is computed to minimize the data bias:

 \succ th_{unsharp} = arg min(|b|)

Original

Unsharpened

Shallow CNNs for Tuning of Adaptive Image Unsharpening (1/2)

- Tuning of $th_{unsharp}$ using a shallow CNN
 - $\,\circ\,$ Train a CNN on the unsharpened samples
 - \circ Varying $th_{unsharp} \pm 10\%$
 - \circ Considering the value for which the CNN obtains the best classification accuracy

Shallow CNNs for Tuning of Adaptive Image Unsharpening (2/2)

• Shallow CNN: VAR-PCANet

- High-accuracy baseline in several fields
- \circ 1 layer
- $\,\circ\,$ Filters are computed as eigenvectors of input data
 - Number of filters V adaptively estimated to preserve a percentage th_{var} of variance of input data

$$\succ V = \arg \min_{V} \left(\left(\sum_{v=1}^{V} \lambda_{v} \right) - th_{var} \right)$$

- Feed-forward design
- Extracts a feature vector
 - Compare samples in the feature space
 - Classification with Nearest Neighbor (1-NN) classifier
 - No training
 - Output only depends on the feature vector

Final Adaptive Image Unsharpening

- Application of tuned threshold $th_{unsharp}$
 - $\,\circ\,$ Both training and testing subsets
 - \circ Set of unsharpened images $DB_{unsharp}$

Deep CNN Classification

- Pre-trained CNN
 - $\,\circ\,$ Limited number of samples
 - $\,\circ\,$ Substitute last layer
 - \succ 1000 classes (ImageNet) → 2 classes (ALL)
 - (0: "normal"; 1: "lymphoblast")
 - $\,\circ\,$ Fine tuning on the ALL database
 - Train on the training subset
 - Inference on the testing subset

Experimental Results

• Database

- ALL-IDB2 dataset
- $\,\circ\,$ 260 images of white cells, each with binary label
 - (0: "normal"; 1: "lymphoblast")
- $\circ~$ Cropped to show only region around the cell
- Evaluation procedure
 - \circ *N*-fold validation (*N* = 2) repeated 10 times, results averaged
 - $\,\circ\,$ Apply the proposed methodology on the training subset
 - Estimate $th_{unsharp}$, perform the final unsharpening, train the Deep CNN on $DB_{unsharp}$
 - Apply Deep CNN to perform the classification on the testing subset of DB_{unsharp}

R. D. Labati, V. Piuri and F. Scotti, "All-IDB: The acute lymphoblastic leukemia image database for image processing," 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 2011, pp. 2045-2048, doi: 10.1109/ICIP.2011.6115881. https://homes.di.unimi.it/scotti/all/

Quantitative Analysis

Original		Unsharp	
Deep CNN	Accuracy (%) (Mean _{Std})	Deep CNN	Accuracy (%) (Mean _{Std})
AlexNet	93.76 _{2.06}	AlexNet	95.07 _{1.85}
VGG16	95.30 _{2.52}	VGG16	96.84 _{1.27}
VGG19	95.38 _{2.05}	VGG19	95.53 _{1.57}
ResNet18	96.00 _{1.01}	ResNet18	96.00 _{1.13}
ResNet50	96.00 _{1.48}	ResNet50	96.69 _{1.49}
ResNet101	95.53 _{1.97}	ResNet101	96.00 _{1.87}
DenseNet201	96.76 _{1.48}	DenseNet201	96.69 _{1.14}

Qualitative Analysis

Conclusions

- First ML-based for focus quality estimation, adaptive unsharpening, and classification of ALL blood samples

 Improve sharpness of images prior to classification
 Shallow CNN to tune the unsharpening parameters
 Adaptively reducing bias between quality and label
- Experiments show increase in classification accuracy using state-of-the-art pretrained CNNs
- Future works
 - Databases with more samples
 - Different DL architectures

Thank you for your kind attention!

https://iebil.di.unimi.it/cnnALL/index.htm https://homes.di.unimi.it/scotti/all/