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PROBLEM STATEMENT SPEECH IFC VECTOR SIMULATIONS — DATASET
microphone signal degraded by (potentially highly time-varying) linear combination of noisy and interference IFC vectors baggd on DNS .cha_llenge dataset [3]
ambient noise 1 + fl 1 1 + fl (I)y,/e 1 (I)u’/e tralnlng and vaI|.da_t|on |
multi-frame minimum-variance-distortionless-response (MFMVDR) filter Tx,l = £ Ty _,7“»’ - E eTd, e (eTd,e clgan: from L|br|.vox (anechoic)
can yield good noise reduction and low speech distortions o ONR ¢, ¢ e noise: from Audioset, Freesound, and DEMAND
MFMVDR filter requires accurate estimates of interference covariance with a-prior = eTa,e | | SNR € [0, 20)dB |
embed MFMVDR filter within deep learning framework = estimate ¢, @, , and @, testing |
clean: from U Graz dataset (anechoic)
noise: 15 clips each from 12 classes, Freesound
SIGNAL MODEL DEEP MFMVDR FILTER SNR € [0, 25) dB
disjoint training, validation, and test sets
| TFT fficl Y, =X +N
noisy STFT coeflicients: ¥ =%+ ¥ oy SIMULATIONS — SETTINGS
k- Al ;CDYl_>covariance a-priori MFMVDR X; | |
multi-frame vector: frequency __ N, matrices SNR STFT: 8 ms frame length, 2 ms shift, Hann window
vi=[Y Y1 ... Ynuq]T P N =16 ms B, , Py A SR multi-frame algorithms: N = 5 frames (16 ms temporal context)
125 Hzi _ _ o deep MFMVDR: diagonal loading applied to estimated covariance
T PSP ’ > supervised Iearnlng-laased apProach to estimate ¢, ®,, and ® matrices with constant 10-3
assumptions: i, covariance matrices ¢, and ¢, temporal convolutional network architecture [4]; hidden dimension
¢ independent speech and noise components: Hermitian positive-semidefinite matrices size varied to obtain ~ 5 M parameters per algorithm
B, = E{yy"} = &y, + B, € CNN = N* real-valued coefficients h,  and h, time-domain scale-invariant signal-to-distortion ratio (SI-SDR) loss
| AR ) DNN inputs: concatenated real and imaginary STFT components Adam optimizer with learning rate 3« 10~ and scheduling, batch size 6,
2 decompose speec Into correlated and uncorrelate component. DNN OUtpUtS: coefficients hy,/ and hu,/; linear activation max. 50 epochS, ear|y Stopping, gradient norm C||pped to 5
X =y X 4 X oy — EXXTy Py e construct matrices:
= x. b Yx = = ~ -
E{XIPY eTdxe b, =Hy, My, H,, = Hermitan {h, } SIMULATIONS — RESULTS
5 uncorrelated speech = interference: u, == n, + x| ®,,=H,H;, H, =Hermitan{h,,}
= Py = OxxVxl" + Puy > a-priori SNR estimate ¢, all compared algorithms yield , _
DNN inputs: logarithm of noisy STFT magnitude high PESQ improvement 12 [
MuLTI-FRAME MVDR FILTER DNN output: &; softplus activation to ensure &, > 0 deep MFMVDR with highest =~
all DNNs are trained with speech enhancement-related loss performance
L _ — no target covariance matrices or a-priori SNRs required complex masking slightly @08
minimize output interference power better than real masking % 0 ¢
while preserving correlated SpGECh component Comp|ex masking Comparab|e '
o W st w1 BASELINE ALGORITHMS e arine
. deep MFMVDR better than _ L | T
solved by MFMVDR filter i complex-valued direct filtering (multi-frame) direct filtering ' : —
O, vy > complex-valued masking (single-frame) STOI improvement shows | q‘@a\ R (\,@(«@ @&P\ &@“
Wi = N Y P 5 real-valued masking (single-frame) similar tendencies & 0 g &&Q" o
_ | | e — _ 2 ConvTasNet [2] (causal implementation) «®
requires estimates of highly time-varying interference covariance

all compared algorithms with same architecture and similar number of
parameters (=~ 5M)

matrix ¢,, and speech interframe correlation (IFC) vector ,
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