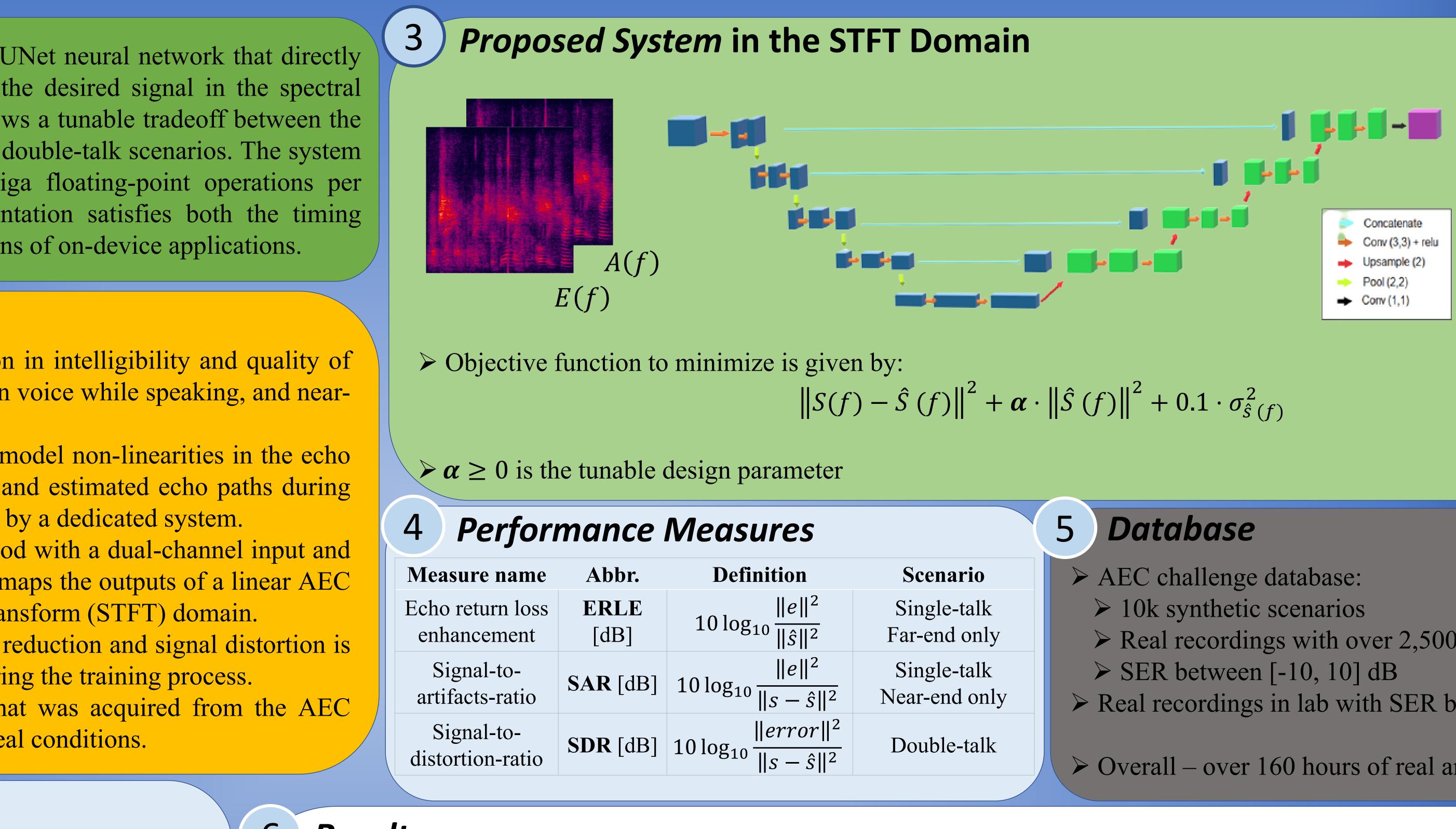

Deep Residual Echo Suppression with a Tunable Tradeoff Between Signal Distortion and Echo Suppression

We propose a residual echo suppression method using a UNet neural network that directly maps the outputs of a linear acoustic echo canceler to the desired signal in the spectral domain. This system embeds a design parameter that allows a tunable tradeoff between the desired-signal distortion and residual echo suppression in double-talk scenarios. The system employs 136 thousand parameters and requires 1.6 Giga floating-point operations per second and 10 Mega-bytes of memory. This implementation satisfies both the timing requirements and the computational and memory limitations of on-device applications.

Motivation

> The presence of acoustic echo can lead to degradation in intelligibility and quality of conversation, since the far-end speaker can hear their own voice while speaking, and nearend speech can be screened.

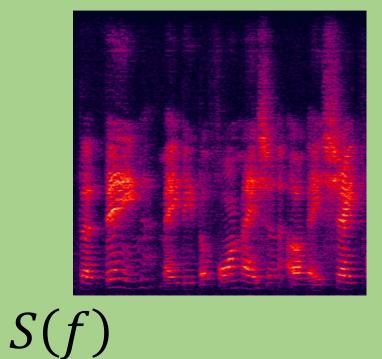

> Conventional acoustic echo cancelers (AECs) do not model non-linearities in the echo path, and generally introduce a mismatch between true and estimated echo paths during convergence. Thus, the residual echo must be suppressed by a dedicated system. > We introduce a residual echo suppression (RES) method with a dual-channel input and single-channel output UNet neural network that directly maps the outputs of a linear AEC to the desired near-end signal in the short-time Fourier transform (STFT) domain. > A design parameter that allows balance between echo reduction and signal distortion is embedded in the UNet objective function, minimized during the training process. \triangleright We conduct experiments with over 160 h of data that was acquired from the AEC challenge database and from independent recordings in real conditions.

Conclusion

> We introduced an RES method based on a UNet neural network that receives the outputs of a linear AEC in the STFT domain. Consists of 136k parameters that require 1.6 Gflops and 10 MB of memory. Satisfies hands-free communication timing constraints on neural processor. \succ In addition, we integrate into the system a tunable tradeoff between echo suppression and signal distortion using a built-in design parameter.

Amir Ivry, Israel Cohen, and Baruch Berdugo | IEEE ICASSP '21

Results 6


No echo path change		UNet		Zhang		Carbajal	
		mean	std	mean	std	mean	std
	PESQ	3.61	0.24	2.51	0.41	2.47	0.55
8	SDR	7.1	0.8	4.3	1.4	4.1	1.6
	ERLE	40.1	2.1	35.7	3.3	21.5	3.6
	SAR	8.8	0.8	4.8	1.1	4.5	1.1

Comparison of α values		$\alpha = 0$		$\alpha = 0.5$		$\alpha = 1$	
		mean	std	mean	std	mean	std
	PESQ	3.61	0.24	3.54	0.29	3.45	0.35
	SDR	7.1	0.8	6.9	0.95	6.8	1.1
	ERLE	40.1	2.1	41.9	2.2	43.5	2.2
	SAR	8.8	0.8	8.4	0.8	8.2	0.9

nce	Measures	5 Database	
obr.	Definition	Scenario	> AEC challeng
RLE B]	$10\log_{10}\frac{\ e\ ^2}{\ \hat{s}\ ^2}$	Single-talk Far-end only	 10k synthet Real record
[dB]	$10\log_{10}\frac{\ e\ ^2}{\ s-\hat{s}\ ^2}$	Single-talk Near-end only	 SER betwee Real recording
[dB]	$10\log_{10}\frac{\ error\ ^2}{\ s-\hat{s}\ ^2}$	Double-talk	> Overall – over

Echo path change		UNet		Zhang		Carbajal	
		mean	std	mean	std	mean	std
	PESQ	3.3	0.25	2.35	0.45	2.05	0.7
	SDR	7	0.8	2.71	1.9	2.8	1.65
	ERLE	38.5	2.45	28.3	3.9	18	4
	SAR	8.8	0.95	4.3	1.35	4.4	1.3

Before convergence		UNet		Zhang		Carbajal	
		mean	std	mean	std	mean	std
	PESQ	2.88	0.5	2.02	0.8	1.91	0.95
	SDR	4.9	1.4	2.6	2.1	1.1	1.7
	ERLE	31.8	2.9	23.3	4.1	15.2	4.9
	SAR	8.5	1	3.7	1.45	3.7	2.7

dings with over 2,500 devices ngs in lab with SER between [-20,-10] dB

160 hours of real and simulated data