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Motivation
• Audio-Visual Speech Recognition is useful in noisy environments where the audio signal is
corrupted.
• Limitations
• It is common in the literature to have a two-step approach where they first extract visual/audio features and then
do recognition.
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Experiments

Datasets

• LRS2: 144 482 video clips from BBC programs (224.1 hours)

• LRS3: 151 819 video clips from TED talks (438.9 hours)

Setup
•Data augmentation
• Visual Stream: Horizontal Flipping, Random Cropping
• Audio Stream: Additive Noise, Time Mask, Frequency Mask

•Network settings (e=12, dff =2048, dk =256, dv =256), where e denotes the number of
conformer blocks, dff denotes the dimension of linear layer in the feed-forward module, dk and dv

are the dimensions for queries/keys and values, respectively.
• Experimental settings We train the model for 50 epochs. The learning rate increases linearly
with the first 25 000 steps, yielding a peak learning rate of 0.0004 and thereafter decreases
proportionally to the inverse square root of the step number.
• Language model corpus the training transcriptions of LibriSpeech (960 h), pre-training and
training sets of LRS2 and LRS3, with a total of 16.2 million words.
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Results

Ablation Study
Method WER
Baseline [4] 63.5
+ E2E 50.9
+ LRW pre-training 46.2
+ Conformer encoder 42.4
+ Transformer LM 37.9

Performance on LRS2
Method Training Data (Hours) WER
Visual-only (↓)
TDNN [5] LRS2 (224) 48.9
TM-seq2seq [1] MVLRS (730)+LRS2&3v0.4 (632) 48.3
Ours (V) LRS2 (224) 39.1
Ours (V) LRW(157)+LRS2 (224) 37.9
Audio-only (↓)
TM-seq2seq [1] MVLRS (730)+LRS2&3v0.4 (632) 9.7
TDNN [5] LRS2 (224) 6.7
Ours (filter-bank) LRS2 (224) 4.3
Ours (raw A) LRS2 (224) 4.3
Ours (raw A) LRW(157)+LRS2 (224) 3.9
Audio-visual (↓)
TM-seq2seq [1] MVLRS (730)+LRS2&3v0.4 (632) 8.5
TDNN [5] LRS2 (224) 5.9
Ours (raw A + V) LRS2 (224) 4.2
Ours (raw A + V) LRW(157)+LRS2 (224) 3.7

Performance on LRS3v0.4

Method Training Data (Hours) WER
Visual-only (↓)
TM-seq2seq [1] MVLRS (730)+LRS2&3v0.4 (632) 58.9
RNN-T [2] YT (31 000) 33.6
Ours (V) LRS3v0.4 (438) 46.9
Ours (V) LRW(157)+LRS3v0.4 (438) 43.3
Audio-only (↓)
TM-seq2seq [1] MVLRS (730)+LRS2&3v0.4 (632) 8.3
RNN-T [2] YT (31 000) 4.8
Ours (filter-bank) LRS3v0.4 (438) 2.3
Ours (raw A) LRS3v0.4 (438) 2.3
Ours (raw A) LRW(157)+LRS3v0.4 (438) 2.3
Audio-visual (↓)
TM-seq2seq [1] MVLRS (730)+LRS2&3v0.4 (632) 7.2
RNN-T [2] YT (31 000) 4.5
Ours (raw A + V) LRW(157)+LRS3v0.4 (438) 2.3

Performance in a noisy scenario on LRS2
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Conclusions
•We present end-to-end speech recognition models that improve audio-only, visual-only and
audio-visual performance on LRS2 and LRS3v0.4.
•On LRS3v0.4, our audio-visual model is trained on a dataset which is 52× smaller than the
state-of-the-art audio-visual model, 595 vs 31000 hours.
•We propose a convolutional neural network based backbone for acoustic modeling, showing that
deep speech representations are more robust to audio noise than log-Mel filter-bank features.
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