A Quaternion-Valued Variational Autoencoder

Eleonora Grassucci, Danilo Comminiello, Aurelio Uncini

Dept. Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Italy

IEEE ICASSP 2021 | Toronto, Canada

6-11 June 2021

State-of-the-art generative models are able to reach impressive results at the cost of millions of parameters which require huge computational resources.

Real-valued networks process image channels as independent elements, not considering intrachannels relations and correlation.

Motivations: making deep models more accessible

Quaternion neural networks (QNNs) [1, 2, 3] allow to reduce the number of parameters by sharing quaternion-weight components through multiple quaternion-input parts.

QNNs process image channels as a single entity and grasp internal latent information, preserving intra-channels relations, thanks to the Hamilton product.

- P. Arena, L. Fortuna, L. Occhipinti, and M. G. Xibilia, "Neural networks for quaternion-valued function approximation," in IEEE Int. Symp. on Circuits and Syst. (ISCAS), (London, UK), pp. 307–310, May 1994
- [2] C. Gaudet and A. Maida, "Deep quaternion networks," in IEEE Int. Joint Conf. on Neural Netw. (IJCNN), July 2018
- [3] T. Parcollet, M. Morchid, and G. Linarès, "A survey of quaternion neural networks," Artif. Intell. Rev., Aug. 2019

Our lead character

The core of the quaternion-valued domain \mathbb{H} is the quaternion number:

$$q = q_a + q_b \hat{\imath} + q_c \hat{\jmath} + q_d \hat{\kappa} = q_a + \overline{q}.$$
(1)

The imaginary units comply with the property:

$$\hat{i}^2 = \hat{j}^2 = \hat{\kappa}^2 = -1 \tag{2}$$

Quaternions are not commutative under the operation of vector multiplication:

$$\hat{i}\hat{j} = -\hat{j}\hat{i}$$
 , $\hat{j}\hat{\kappa} = -\hat{\kappa}\hat{j}$, $\hat{\kappa}\hat{i} = -\hat{i}\hat{\kappa}$. (3)

Hamilton product for quaternion convolutions

In deep quaternion neural networks, the quaternion convolution is performed through the Hamilton product:

$$\begin{split} \mathbf{W} \otimes \mathbf{q} &= \left(\mathbf{W}_{a}\mathbf{q}_{a} - \mathbf{W}_{b}\mathbf{q}_{b} - \mathbf{W}_{c}\mathbf{q}_{c} - \mathbf{W}_{d}\mathbf{q}_{d}\right) \\ &+ \left(\mathbf{W}_{a}\mathbf{q}_{b} + \mathbf{W}_{b}\mathbf{q}_{a} + \mathbf{W}_{c}\mathbf{q}_{d} - \mathbf{W}_{d}\mathbf{q}_{c}\right)\hat{\imath} \\ &+ \left(\mathbf{W}_{a}\mathbf{q}_{c} - \mathbf{W}_{b}\mathbf{q}_{d} + \mathbf{W}_{c}\mathbf{q}_{a} + \mathbf{W}_{d}\mathbf{q}_{b}\right)\hat{\jmath} \\ &+ \left(\mathbf{W}_{a}\mathbf{q}_{d} + \mathbf{W}_{b}\mathbf{q}_{c} - \mathbf{W}_{c}\mathbf{q}_{b} + \mathbf{W}_{d}\mathbf{q}_{a}\right)\hat{\kappa} \end{split}$$
(4)

The quaternion convolution allows to capture internal latent relations within the features of a quaternion.

Quaternion layers

The forward phase for a generic quaternion fully connected layer can be defined as:

$$\mathbf{y} = \alpha \left(\mathbf{W} \otimes \mathbf{x} + \mathbf{b} \right) \tag{5}$$

where y is the output of the layer, b is the quaternion-valued bias offset and α is any quaternion split activation function:

$$\alpha(q) = f(q_a) + f(q_b) + f(q_c) + f(q_d).$$
(6)

Deep QCNN may also involve other operations in the quaternion domain, like pooling and batch normalization [4].

 ^[4] R. Vecchi, S. Scardapane, D. Comminiello, and A. Uncini, "Compressing deep-quaternion neural networks with targeted regularisation," CAAI Trans. Intell. Technol., vol. 5, pp. 172–176, Sept. 2020

Image processing with quaternion neural networks

Figure 1: Image processing with real-valued CNN (top) and quaternion-valued QCNN (bottom).

Second-order statistics in the quaternion domain involve the definition of the augmented covariance matrix \tilde{C}_{qq} . Further details can be found in the paper.

$$\tilde{\mathbf{C}}_{\mathbf{q}\mathbf{q}} = \mathrm{E}\left\{\tilde{\mathbf{q}}\tilde{\mathbf{q}}^{\mathsf{H}}\right\} = \begin{bmatrix} \mathbf{C}_{\mathbf{q}\mathbf{q}} & \mathbf{C}_{\mathbf{q}\mathbf{q}^{i}} & \mathbf{C}_{\mathbf{q}\mathbf{q}^{j}} & \mathbf{C}_{\mathbf{q}^{i}} \\ \mathbf{C}_{\mathbf{q}\mathbf{q}^{i}}^{\mathsf{H}} & \mathbf{C}_{\mathbf{q}^{i}\mathbf{q}^{i}} & \mathbf{C}_{\mathbf{q}^{i}\mathbf{q}^{j}} & \mathbf{C}_{\mathbf{q}^{i}\mathbf{q}^{k}} \\ \mathbf{C}_{\mathbf{q}\mathbf{q}^{j}}^{\mathsf{H}} & \mathbf{C}_{\mathbf{q}^{j}\mathbf{q}^{i}} & \mathbf{C}_{\mathbf{q}^{j}\mathbf{q}^{j}} & \mathbf{C}_{\mathbf{q}^{j}\mathbf{q}^{k}} \\ \mathbf{C}_{\mathbf{q}\mathbf{q}^{k}}^{\mathsf{H}} & \mathbf{C}_{\mathbf{q}^{k}\mathbf{q}^{i}} & \mathbf{C}_{\mathbf{q}^{k}\mathbf{q}^{j}} & \mathbf{C}_{\mathbf{q}^{j}\mathbf{q}^{k}} \\ \end{bmatrix}$$

(7)

For Q-proper distributions, $\tilde{\mathbf{C}}_{\mathbf{q}\mathbf{q}}$ is a diagonal matrix:

$$\tilde{\mathbf{C}}_{\mathbf{q}\mathbf{q}} = \mathrm{E}\left\{\tilde{\mathbf{q}}\tilde{\mathbf{q}}^{\mathsf{H}}\right\} = \begin{bmatrix} \mathbf{C}_{\mathbf{q}\mathbf{q}} & 0 & 0 & 0\\ 0 & \mathbf{C}_{\mathbf{q}^{i}\mathbf{q}^{i}} & 0 & 0\\ 0 & 0 & \mathbf{C}_{\mathbf{q}^{j}\mathbf{q}^{j}} & 0\\ 0 & 0 & 0 & \mathbf{C}_{\mathbf{q}^{k}\mathbf{q}^{k}} \end{bmatrix}$$
(8)

The diagonal contains the covariance matrices of the quaternion input and its involutions.

Quaternion VAE architecture

Figure 2: Quaternion-valued variational autoencoder architecture (QVAE). The quaternion encoder learns the quaternion mean μ_q and the augmented covariance matrix $\tilde{\mathbf{C}}_{\mathbf{q}\mathbf{q}}$ to build the latent representation. The quaternion decoder reconstruct the 4-channel image. The PyTorch implementation of the QVAE is available online at https://github.com/eleGAN23/QVAE.

Figure 3: Original test set and reconstructed samples sets from plain VAE and proposed QVAE.

Generation task

Figure 4: Generated fake image samples from the plain VAE and the proposed QVAE.

Table 1: Averaged results from objective metrics on reconstruction (SSIM, MSE) and generation (FID) tasks.

	SSIM↑	MSE↓	FID↓	$\#$ parameters \downarrow
VAE	0.8492	0.0047	195.7	3,762,539
QVAE	0.8941	0.0031	175.7	1,404,996

Moving neural networks from the real domain to the quaternion one allows the network to process image channels as a whole element, capturing internal latent relations.

Quaternion layers reduces the number of parameters and memory consumption.

The plain QVAE shows promising results, generating better images with less than a half the number of parameters with respect to the real-valued counterpart.

- Expand QVAE for Q-improper distributions.
- Test more complex variational autoencoder in the quaternion domain.
- Extend QVAE for other kind of signals such as audio.

References

- P. Arena, L. Fortuna, L. Occhipinti, and M. G. Xibilia, "Neural networks for quaternion-valued function approximation," in IEEE Int. Symp. on Circuits and Syst. (ISCAS), (London, UK), pp. 307–310, May 1994.
- [2] C. Gaudet and A. Maida, "Deep quaternion networks," in IEEE Int. Joint Conf. on Neural Netw. (IJCNN), July 2018.
- [3] T. Parcollet, M. Morchid, and G. Linarès, "A survey of quaternion neural networks," Artif. Intell. Rev., Aug. 2019.
- [4] R. Vecchi, S. Scardapane, D. Comminiello, and A. Uncini, "Compressing deep-quaternion neural networks with targeted regularisation," CAAI Trans. Intell. Technol., vol. 5, pp. 172–176, Sept. 2020.
- [5] X. Hou, L. Shen, K. Sun, and G. Qiu, "Deep feature consistent variational autoencoder," in Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on, pp. 1133–1141, IEEE, 2017.
- [6] A. Vahdat and J. Kautz, "NVAE: A deep hierarchical variational autoencoder," in Neural Information Processing Systems (NeurIPS), 2020.
- [7] D. Comminiello, M. Lella, S. Scardapane, and A. Uncini, "Quaternion convolutional neural networks for detection and localization of 3D sound events," in *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, (Brighton, UK), pp. 8533–8537, May 2019.
- [8] E. Grassucci, D. Comminiello, and A. Uncini, "Quaternion-valued variational autoencoder," in arXiv preprint arXiv:2010.11647v1, 2020.

THANK YOU FOR YOUR ATTENTION

QUESTIONS?

ELEONORA GRASSUCCI eleonora.grassucci@uniroma1.it