Low Complexity SLM for OFDMA System with Implicit Side Information

Shicheng Hu, Miao Yang, Kai Kang, H. Qian

Shanghai Advanced Research Institute, Chinese Academy of Sciences

April 21, 2021

- 2 Proposed Scheme
- 3 Experimental Results

1 Introduction

2 Proposed Scheme

⁽³⁾ Experimental Results

PAPR problem in OFDM system

- System wider with iv subcarriers
- $\bullet\ x[n]$ asymptotically approximates to i.i.d. complex Gaussian.
- Orthogonal frequency division multiple access (OFDMA) inherits the advantages of OFDM while suffers from high PAPR.

PAPR reduction methods [1]

- With distortion:
 - filtering, clipping, peak windowing.
- Without distortion:
 - selected mapping (SLM), partial transmit sequence (PTS).

• simple and no distortion.

• require side information (SI).

OFDMA system

• Subcarriers is divided according to RU.

• Each UE only receives its related subcarriers.

Related Works

Efforts to avoid SI transmission:

- Simplified maximum likelihood (ML) detection [2].
- Blind tone power difference modulation [3].
- Embedded SI transmission [4].
- Pilot-assisted SI transmission with ML detection [5].

These methods are not feasible for OFDMA PAPR reduction.

2 Proposed Scheme

⁽³⁾ Experimental Results

Proposed SLM scheme

Basic idea: SI is embedded in the phase rotation of each RU's pilot.

- \mathbf{P}^u is split into M RU blocks.
- Each block is chosen from a RU specific dictionary.
- Dictionary size: Q phase rotation vectors with length L.

The u-th candidate sequence:

- X are divided according to RU.
- **P**^u is carefully designed for each RU.

No SI transmission is required for the proposed scheme.

ICASSP 2021

Proposed SLM scheme

Example of \mathbf{P}^u generated with M = 8 RUs, dictionary size Q = 2 and RU length L = 4.

• The dictionary of the first RU: \mathbf{P}_0^0 and \mathbf{P}_0^1 .

- **P**₀⁰: one to one correspondence with its pilot sample.
- \mathbf{P}^{u} : a combination of 8 dictionaries.

Such phase rotation vector set can be generated if: $Q^M > U.$ (2)

Theoretical Analysis

• PAPR performance is evaluated by the complementary cumulative distribution function (CCDF),

$$\Pr(\operatorname{PAPR}_{S} > \tau) = \prod_{u=1}^{\circ} \Pr(\operatorname{PAPR}_{u} > \tau) = \left(1 - (1 - \exp(-\tau))^{N}\right)^{U}.$$
 (3)

- PAPR_S : PAPR of proposed SLM scheme.
- $PAPR_u$: PAPR of the *u*-th sequence.

PAPR reduction performance is not deteriorate compared with the conventional SLM.

• The proposed detector is maximum likelihood optimal with low complexity.

Detection complexity analysis

• Computational complexity:

Algorithm	× (%)	+ (%)
proposed	$6QM + 4M + 6CN_d + 4N_d$	$5QM + 2M + 5CN_d + 2N_d$
SLM in $[5]$	$6UM + 4M + 6CN_d + 4N_d$	$6UM + 2M + 5CN_d + 2N_d - U$
modified SLM of [5]	$6UM + 4M + 6CN_d + 4N_d$	$5UM + 2M + 5CN_d + 2N_d$

* \times means real multiplication, + represents real addition.

- C is the size of modulation scheme $\varOmega.$
- When N = 512, M = 32, U = 32, Q = 4, $\Omega = QPKS$, the number of UEs is 4.
- saved $81.819\% \times, 83.174\% +$ compared to [5].
- saved $27.273\% \times$, 28.455% + compared with the modified algorithm of [5].

1 Introduction

2 Proposed Scheme

3 Experimental Results

PAPR performance

Compare PAPR with difference U.

- Experimental setting:
 - N = 512, - M = 8.

-
$$L = 26$$
,

- $\Omega = \text{QPSK}.$

• **Conclusion**: PAPR performance is close to the theoretical analysis.

PAPR performance

Compare PAPR with different sizes of RU.

- Experimental setting:
 - N = 512, - $\Omega = QPSK$, - U = 8.

• **Conclusion**: The fine-grained division yields better PAPR reduction performance.

BER performance

BER with different U.

- Experimental setting:
 - N = 512,
 - $\Omega = \text{QPSK},$
 - M = 8, and 8 UEs, each UE equipped with a RU.

• **Conclusion**: The proposed scheme is more robust to noise compared with the modified scheme of [5].

1 Introduction

2 Proposed Scheme

⁽³⁾ Experimental Results

- We propose a SLM scheme to reduce PAPR of the OFDMA system.
- The proposed scheme does not require SI transmission.
- The detection of the proposed scheme is simple, and the complexity is low.
- PAPR reduction and BER performance is satisfactory.

References

- Y. Rahmatallah and S. Mohan, "Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy," *IEEE Communications Surveys & Tutorials*, vol. 15, no. 4, pp. 1567–1592, 2013.
- [2] A. D. S. Jayalath and C. Tellambura, "SLM and PTS peak-power reduction of OFDM signals without side information," *IEEE Transactions on Wireless Communications*, vol. 4, no. 5, pp. 2006–2013, 2005.
- [3] N. Chen and G. Zhou, "Peak-to-average power ratio reduction in OFDM with blind selected pilot tone modulation," *IEEE Transactions on Wireless Communications*, vol. 5, no. 8, pp. 2210–2216, 2006.
- [4] S. Le Goff, S. AI-Samahi, B. K. Khoo, C. C. Tsimenidis, and B. S. Sharif, "Selected mapping without side information for PAPR reduction in OFDM," *IEEE Transactions on Wireless Communications*, vol. 8, no. 7, pp. 3320–3325, 2009.
- [5] J. Park, E. Hong, and D. Har, "Low complexity data decoding for SLM-based OFDM systems without side information," *IEEE Communications Letters*, vol. 15, no. 6, pp. 611–613, 2011.

