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ABSTRACT

Multichannel acoustic signal processing is predicated on the fact that
the interchannel relationships between the received signals can be
exploited to infer information about the acoustic scene. Recently
there has been increasing interest in algorithms which are applica-
ble in dynamic scenes, where the source(s) and/or microphone ar-
ray may be moving. Simulating such scenes has particular chal-
lenges which are exacerbated when real-time, listener-in-the-loop
evaluation of algorithms is required. This paper considers candidate
pipelines for simulating the array response to a set of point/image
sources in terms of their accuracy, scalability and continuity. A
new approach, in which the filter kernels are obtained using prin-
cipal component analysis from time-aligned impulse responses, is
proposed. When the number of filter kernels is ≤ 40 the new ap-
proach achieves more accurate simulation than competing methods.

Index Terms— acoustic simulation, microphone arrays, head
movement, hearing aids, virtual reality

1. INTRODUCTION

Microphone arrays are now routinely included in many devices
including mobile phones, home voice assistants, mobile robots, aug-
mented reality systems and hearing aids. Exploiting the direction-
dependence of the interchannel relationships between the micro-
phone signals, beamforming algorithms attenuate interfering sources
and/or diffuse noise while preserving the wanted sound source. Re-
cently, algorithms which account for [1, 2], or actively exploit [3],
array motion have been proposed.

Development and evaluation of systems in this emerging field
require the real-time simulation of complex dynamic scenarios in
which the microphone signals are physically accurate, to the extent
that they elicit reliable measures of algorithm performance. We con-
centrate specifically on the case of binaural hearing aids where the
device at each ear typically contains two or three microphones and
aspire to conduct listener-in-the-loop experiments where algorithms
and acoustic scenarios can be varied systematically. Similar experi-
ments using a master hearing aid (MHA) (e.g. [4]) have used a static
lab environment [5] or virtual environments rendered through a loud-
speaker array [6, 7]. In [8] a system which simulates microphone
signals in real-time is presented however, at the time of publication,
the update rate of early reflections was limited by computational re-
sources, such that only the direct path signals could be considered
physically accurate. It is, therefore, important to consider the most
efficient means of simulating physically-accurate microphone sig-
nals in complex reverberant environments.

This work was supported by the Engineering and Physical Sciences Re-
search Council [grant number EP/S035842/1].

In this paper we are concerned with simulating the response of
an array to a potentially large number of sources, representing the di-
rect path and early reflections. We assume that the source locations
are obtained using geometric acoustic methods [9, 10, 11, 12, 13].
In this approach, the sound field at the listener’s head due to all
the sources that are present is regarded as a superposition of plane
waves arriving from different directions. The signal at each micro-
phone may then be obtained by convolving each plane wave with the
direction-dependent array manifold and summing over all waves. In
a classic binaural system the array manifold is better known as the
head-related impulse response (HRIR) whereas for hearing devices
the term hearing aid head-related impulse response (HAHRIR) is be-
coming common. Since the time-of-flight of a particular ray is not,
in general, an exact multiple of the sample period, it is necessary to
interpolate each ray to account for the fractional sample delay [14]
and ensure that inter-microphone delays are preserved.

Often, the array manifold must be interpolated from a limited
number of measurement directions [15]. In [16] spatialization filters
are obtained by interpolating between time-aligned measurements of
the HRIR, with the inter-microphone time delay (ITD) reintroduced
after convolution. The time alignment is needed to avoid comb-
filtering effects. This is a time-aligned version of vector base ampli-
tude panning (VBAP) [17] and we present a more efficient structure
below in which delays are introduced before the convolution step.
In [18] spherical harmonic (SH) interpolation of HRIRs was used to
obtain time varying filters for dynamic spatialization. It was shown
that more of the energy in the SH representation is concentrated at
lower orders if the SH expansion is performed around microphone-
centred co-ordinates. Recent investigations [19, 20, 21] have simi-
larly concentrated the majority of the energy in fewer harmonics by
time aligning HRIRs prior to SH expansion. Whilst a SH representa-
tion can be used to obtain HRIRs at interpolated directions, it is also
possible to perform the convolution in the SH domain. In this case
source signals are first encoded into a SH representation. Applying
principal component analysis (PCA) directly to a database of HRIR
for many individuals, [22] concluded that a good approximation to
the original can be obtained even when as few as five of the princi-
pal components are retained. Treating each basis function as a filter
kernel, spatialization can be obtained by encoding signals into the
domain defined by the principal components.

In this paper we (i) determine the computational cost of alterna-
tive pipelines, (ii) investigate whether time-aligning the array man-
ifold prior to performing PCA yields similar improvements as in
SH and vector base amplitude panning (VBAP), (iii) investigate the
number of filter kernels needed to obtain physically-accurate signals
and (iv) examine the trade-off between accuracy and scalability.
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Fig. 1: Pipeline structures for simulating microphone array signals showing signal flow for a single source where ∗, g(t) and δ(t) denote a
filter operation, a vector multiplication, and a delay respectively. The vertical dashed line separates per-source, time-varying processing to the
left from static processing blocks, which are common to multiple sources, to the right.

2. PROBLEM DEFINITION

In array-centered co-ordinates, the signal, xs(t), at the origin is the
result of free-field propagation from a point source (or image source)
at position rs. The resulting signal, ym(t), at the m-th microphone
of an array is

ym(t) =

∫

τ

hm(Ω(t), τ)xs(t− τ)dτ (1)

where hm(Ω, t) is the array manifold, which depends on the direc-
tion of arrival, Ω(t), of the incident wave.

Movement of the source and/or the array appears as source
movement in the array-centered co-ordinates. Assuming the source
is in the far field, the propagation delay and attenuation effects
of translation are encapsulated in xs(t). The effect of rotation is
observed in the direction-dependence of hm(Ω, t).

The goal of a simulation pipeline is to approximate, ym(t) at
sample instants t = n∆, n ∈ Z. In discrete time, (1) becomes

ym(n∆) = hTm(Ω(n∆))xs(n∆) (2)

where

hm(Ω) =
[
hm(Ω, 0) hm(Ω,∆) . . . hm(Ω, (N − 1)∆)

]T

xs(t) =
[
xs(t) xs(t−∆) . . . xs(t− (N − 1)∆)

]T
.

To compare methods of simulating the time-varying filtering the
following assumptions are made: (i) hm(Ω, t) is known from criti-
cally sampled measurements in time and space, such that it can be
interpolated to arbitrary angles over the frequencies of interest and
expressed as a finite impulse response (FIR) filter of length N , (ii)
processing is performed in blocks of length, L samples, (iii) Ω(t)
is sampled once per block, (iv) a look-up table (LUT) which maps
Ω to parameter/coefficient values can be accessed once per block
with negligible computational cost, but not more often1, and (v) time

1The validity of this assumption depends on the size of cache available
and the size of the LUT.

variation is implemented as linear interpolation between one or more
values over the duration of one block using a per-sample increment
— the increment is assumed to have negligible computational cost
but there is an overhead of one multiply per interpolated parameter
in each block.

Desirable properties of a processing pipeline are (i) scalability
— maximising the number of sources which can be synthesised;
(ii) numerical accuracy — signal processing methods require certain
acoustic features to be fulfilled. In particular the relative transfer
function (RTF) between microphones obtained from the simulated
signals should be close to the true RTF for a plane wave; and (iii)
perceptual fidelity — simulated signals should be free of glitches
(e.g. discontinuities) and direction dependent spectral modifications
(e.g. comb filtering).

3. PROCESSING PIPELINES

Potential processing pipelines are considered according to their over-
all structure, as shown in Fig. 1. For each, the computational cost
is estimated according to the number of multiplication operations
required under the assumptions outlined in Section 2. The compu-
tational cost per block of each pipeline is expressed in Table 2 as
a function of the parameters listed in Table 1. The dependence of
each pipeline on the number of microphones, M , and the number of
sources, S is particularly important in choosing the most appropriate
pipeline for a particular application. In all cases, F/L blocks must
be processed each second.

3.1. Direct synthesis methods

Direct synthesis methods, depicted in Fig. 1(a), perform a filtering
operation independently for each source. Time variation is imple-
mented by changing the filter.

Interpolated FIR The structure of the processing follows (2). The
LUT returns the required hm(Ω) and the N filter coefficients are
incremented on each sample. Since the filter changes at each sam-
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Symbol Definition

F sample rate
L samples per buffer
S number of point sources
M number of microphones
J number of non-zero kernel coefficients
K number of kernels (filtering operations)
N kernel length

D implement delay (number of sinc coefficients)
Tf forward FFT ( N*log(N) )
Tr reverse FFT ( N*log(N) )
C multiplication of signal with kernel (N/2)

Table 1: List of variables in computational cost

ple, there is no advantage to frequency domain convolution so direct
convolution is used with LN multiplies per source, per microphone.
Delay only For an ideal free-field array hm(Ω), reduces to a
direction-dependent fractional delay [14]. The per-microphone
delay is incremented on each sample and sinc interpolation is im-
plemented using a precomputed, oversampled sinc wavetable. The
computational cost depends on the order of the sinc interpolation,
with the number of coefficients here denoted as D.
Direct FFT The array manifold is fixed for the duration of each
block, rather than interpolated. The LUT returns the array manifold,
pre-transformed into the frequency domain. One forward transform,
with cost Tf , is required per source and one reverse transform, with
cost Tr , per microphone. The cost of a fast Fourier transform (FFT)
is hardware dependent but N log2(N) is a reasonable approxima-
tion. The cost of complex multiplication depends on the hardware
and is denoted C.

3.2. Microphone-independent encoder methods

Microphone-independent encoder methods, depicted in Fig. 1(b),
use a time-varying gain to assign each source signal to one or more
of K busses. Each bus is filtered by a fixed filter kernel per micro-
phone and microphone signals are obtained by summing over the
corresponding filter outputs. Taken together the kernels impart the
required direction-dependent filtering, including interchannel phase
differences. To avoid transients, the encoding gains are interpolated
from the previous to the new vales over the duration of the frame.

Virtual loudspeakers (NSPK) Filter kernels are the array manifold
corresponding to a grid of directions. The LUT returns the index of
the nearest loudspeaker and the source is assigned to the bus for that
loudspeaker. Using the nearest loudspeaker ensures the microphone
signals correspond to a valid, but likely wrong, direction. Interpola-
tion between previous and new loudspeakers is achieved using fixed
fade out/in at a cost of two multiplies per sample.
Virtual speakers (VBAP) A weighted sum of the source signal is
sent to neighbouring loudspeakers where J is 2 for loudspeakers on a
circle or 3 for a spherical distribution [17]. The LUT returns the pan-
ning weights. The number of active speakers per source per block
is upper bounded by 2J . If the direction of arrival (DOA) changes
rapidly there may be intermediate speakers which are unused.
Spherical harmonics (SH) The kernels are the spherical Fourier
transform (SFT) [23] of hm(Ω, t) with one kernel per SH compo-
nent. For a transform of order Q, K = (Q + 1)2, or if Ω is con-
strained to the horizontal plane, K = 2Q+ 1. The LUT returns the

Pipeline Computational cost

FIR MSN +MSLN
Delay only D = MS +MSLD
Direct FFT STf +MSC +MTr

NSPK 2SL+KTf + F
VBAP S(2J) + S(2J)L+KTf

SH SK + SKL+KTf + F
GDA VBAP D + S(2J) +M(S(2J)L+KTf ) + F

GDA SH D + SK +M(SKL+KTf ) + F
PCA M (SK + SKL+KTf ) + F

GDA PCA D +M(SK + SKL+KTf ) + F

Table 2: Computational cost of pipelines whereF = MKC+MTr

precomputed result of evaluating the SH function for the required
DOA. Regardless of the DOA all sources are fed to all kernels.

3.3. Time-aligned encoder methods

It has been proposed that time-aligning the array manifold, such that
the onset time is independent of direction, can improve the accuracy
of interpolation. This requires that direction-dependent time delays
are applied separately, as shown in Fig. 1(c). Compared to the en-
coder methods in Section 3.2, the additional cost of implementing
this delay is the same as implementing the ‘Delay only’ pipeline.
Furthermore, since the inputs to each kernel are decoupled, the for-
ward FFTs must be computed independently for each microphone.
In this work we use the negative-sloped zero crossing of the energy
weighted group delay to estimate the onset times, as in [24], and
refer to the methods as group delay-aligned (GDA).

GDA VBAP Time-alignment avoids the introduction of comb-
filtering artifacts when the same signal is presented from different
speakers arriving with different delays.

GDA SH Time-alignment is applied before performing the SFT
which reduces the spatial bandwidth associated with the direction-
dependence of the onset.

3.4. Principal component analysis (PCA) methods

Using basis functions obtained from PCA as the filter kernels en-
sures that the maximum amount of variance in the array manifold
is accounted for in fewest number of kernels. The encoder weights
returned by the LUT are data driven.

PCA The encoding weights are microphone dependent and so all
processing scales with M .

GDA PCA It is proposed that time-alignment of the array mani-
fold prior to computing the principal components will allow a better
reconstruction of the array manifold using fewer kernels.

4. EVALUATION

To evaluate the physical accuracy of the rendering pipelines at each
microphone individually, simulated impulse responses, ĥm(Ω, t),
created using each of the methods were compared to ground truth
impulse responses, hm(Ω, t), for sources on a horizontal grid with
1◦ resolution. The mean and worst case root mean squared (RMS)
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Fig. 2: Accuracy of rendering pipelines as a function of the number of kernels per microphone. (left) mean error over direction, (middle)
error at worst case direction, (right) worst case error in effective beampattern.
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Fig. 3: Computational cost as a function of S. For each pipeline
the number of kernels, K, indicated in the legend, is the minimum
required to achieve mean error of −20 dB (see left panel of Fig. 2).
F = 48000, L = 128, M = 4, N = 256, J = 2, D = 0.

error over all directions is reported for each pipeline. The mean er-
ror gives a consistent impression of the overall accuracy whereas the
worst case error is more appropriate for defining the limiting case of
acceptability for a particular task. Of particular interest for array sig-
nal processing is whether the simulated microphone signals produce
the expected response at the output of a beamformer. A minimum
variance distortionless response (MVDR) beamformer is designed
for isotropic noise using the ground truth array manifold. The power
of the beamformer output in response to the ground truth array man-
ifold is the target beampattern whereas the effective beampattern is
the power in response to the simulation pipelines. The worst case
error in the beampattern is the difference between the target and ef-
fective beampattern over Ω.

Fig. 2 shows the accuracy of each pipeline as a function of the
number of kernels, K. For each metric, when a relatively small
number of kernels is used, the time-aligned methods outperform

their conventional counterparts. This is consistent with previously
reported results [18, 20]. As more components are used the conven-
tional methods perform better whereas the worst case error for GDA
VBAP and GDA SH plateaus. For very good accuracy (≤−40 dB
error in the rendered impulse response or ≤−0.01 dB error in the
beampattern) the SH and PCA methods require the fewest kernels.

To compare across all methods the number of kernels is only
one factor in the computational cost. Choosing a mean error in the
rendered impulse response of −20 dB as an obtainable level of ac-
curacy for all methods, the scalability of each pipeline is shown in
Fig. 3, with the values of the variables given in the caption. Note
that D = 0, which effectively makes the cost of implementing the
fractional delay free, is chosen to highlight the additional cost of in-
dividually encoding and performing the forward transform for each
microphone. Each pipeline has a trade-off between the overhead in
computing the kernel compared to the cost of encoding one extra
source. GDA PCA requires the fewest kernels and yet, even neglect-
ing the cost of implementing the per-source, per-microphone delay,
it is more expensive than SH. Of the microphone-independent en-
coder methods, SH requires the fewest kernels and has the lowest
overhead. However, for S > 5 it can be seen that other methods
require less computation. VBAP is optimal for 5 < S < 90 with
NSPK offering the best scalability for S > 90. It should be noted
that Fig. 3 relates to one specific level of accuracy, for which NSPK
was the limiting factor, and one specific array.

5. DISCUSSION AND CONCLUSIONS

The computational cost and accuracy of a range of simulation
pipelines have been presented. Of particular interest is a recently
proposed class of pipelines in which the filter kernels are obtained
by first time-aligning the array manifold. Of these, the GDA PCA
pipeline was the most accurate in our tests. However, in the case
studied here, the cost of encoding and transforming each source
signal separately for each microphone outweighed the saving gained
from using fewer kernels.
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