# Angle-of-Arrival (AoA) Factorization in Multipath Channels

Yu-Lin Wei

Romit Roy Choudhury



**IEEE ICASSP 2021** 

#### AoA (Angle of Arrival) = angle $\theta$ in which a signal arrives



#### Microphone array can estimate AoA

#### **Different AoA difficulties**

Easy 1 source **Uncorrelated sources** This paper: Correlated or Hard uncorrelated sources

#### Why do we want to estimate echo AoA?

Indoor localization

Silent zone



#### **More information -> more applications**



# AoA Primer & Challenge New AoA Algorithm Results

#### 1 Speaker & 1 path



#### 1 Speaker & 1 path



#### Estimating $\tau_{ij}$ : Align & Cancel

- 1. compute  $\widehat{\tau_{ij}}(\theta) \ \forall \theta \in [0^\circ, 360^\circ)$
- 2. Delay received signal  $y_i$  by  $-\widehat{\tau_{ij}}(\theta)$
- 3. Find the delay  $\widehat{\tau_{ij}(\theta)}$  matching signals  $\theta = argmin_{\theta} \sum_{ij} \left| Delay \left( y_i, -\widehat{\tau_{ij}}(\theta) \right) - y_j \right|$



But what if there are two paths?

#### **Different AoA difficulties**

Easy 1 source **Uncorrelated sources** This paper: Correlated or Hard uncorrelated sources



#### N Speaker & 1 path



No single microphone delay  $\tau_{ij}$ 

#### State-of-the-art

MUSIC[R. Schmidt 1986], ESPRIT[R. Roy 1989]

Separate only "uncorrelated" sources Human can separate violin from piano Amp. lacksquareTime  $P(\theta)$  $OO^{H}a(\theta)$ Amp.  $\vec{e}$ Time Noise  $\vec{e}_{n2}$ subspace Signal subspace  $\vec{e}_n$  $\vec{e}_{s2}$ Amp. Time  $\vec{\chi}_1$ 

But echoes are strongly correlated

#### **Different AoA difficulties**

Easy 1 source

## Uncorrelated sources

This paper:
Correlated or
Hard uncorrelated sources





# AoA Primer & Challenge New AoA Algorithm Results

### Insight

## Cancel the known path iteratively



#### How to cancel the mixed echoes in the residual?

#### **Algorithm challenge**

## Align and cancel with another residual



#### **Residual pair to estimate the echo AoA**

#### **This paper: IAoA - Iterative AoA**



#### We can solve N echoes one by one

#### IAoA – Technical zoom in



1. Align & cancel using channel

2. Cancel residual using channel bank

#### Channel



#### Align = convolve with the other channel

## Align using the channel bank $\hat{h}(\theta)$



#### **Cancel the second path**



We can find  $\theta_k$  with updated channel banks

#### This presentation

# AoA Primer & Challenge New AoA Algorithm Results

### Simulation



- 5x5m room
- 1 speaker, 6-mic array
- 1m transmission distance

### IAoA can accurately estimate $\theta_1$ to $\theta_3$

#### **Real-world experiment**

- Corner of a bedroom
- 50cm from the wall
- Speaker placed at 6 places 1m away



 $3^{rd}$  AoA  $\theta_3$ 



#### **Summary**

- An algorithm to estimate the **AoA of each echo**
- Align and cancel to **cancel already estimated paths**
- 6-mic array can accurately estimate AoA up to 3 paths
- Works for any correlated or uncorrelated sources