

Introduction

We propose a segment based F-measure, which specifically addresses issues such as reference errors, matching start and end boundaries, and speaker pairing. The performance of the metric is analysed in the context of state-of-the-art systems and compared with other existing metrics. It is shown to give a deeper insight into the segmentation quality over the standard metrics, and thus better value to understand impact on follow on tasks such as ASR.

Existing metrics for diarisation

Diarisation error rate

Diarisation error rate (DER) considers missed speech, false alarm speech and speaker error:

$$DER = MS + FA + SE$$

Disadvantages:

- the collar around reference boundaries is typically 0.25 seconds, equivalent to 0.5 seconds around the boundary, represents at least a whole word and this time is not scored
- speaker mapping gives priority to large clusters and can ignore small clusters
- time based, does not consider segmentation quality

4:35.0 4:40.0 4:45.0 4:50.0 Segmentation1 Segmentation2 =

Boundary evaluation

Boundary methods using the F-measure and Dynamic Programming cost gives an average boundary error in time:

$$F = 2\frac{PRC * RCL}{PRC + RCL}$$

Disadvantages:

- deletions and insertions are treated equally
- DPC the metric will give most information if the units to be assessed are of approximately equal length
- does not consider what "type" of boundaries the matches are

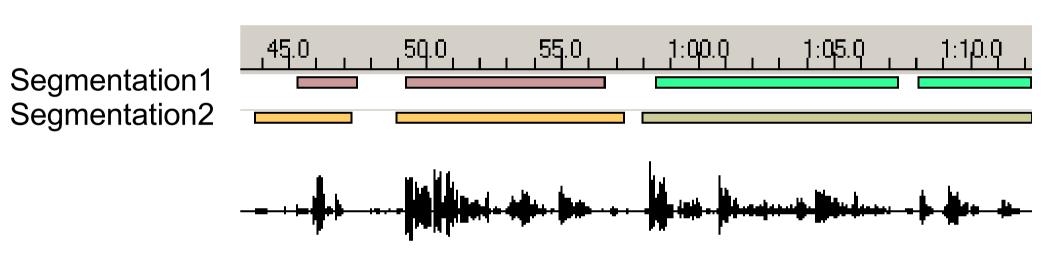
Disadvantages:

Segment-oriented evaluation of speaker diarisation performance

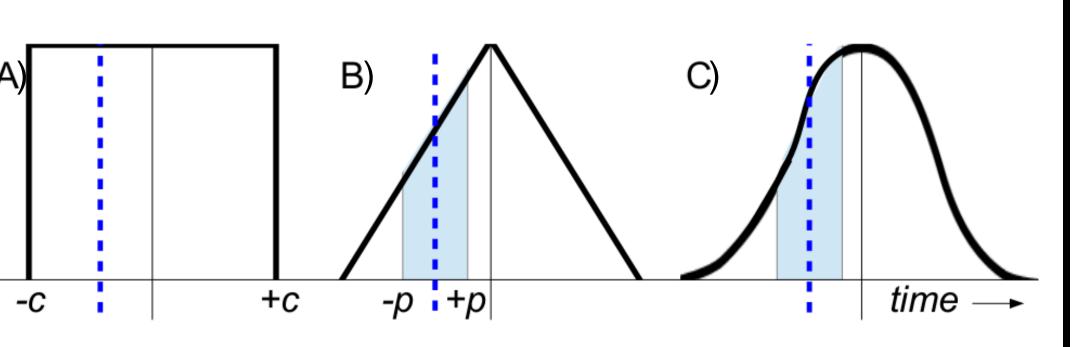
Rosanna Milner, Thomas Hain

Speech and Hearing Group, Department of Computer Science, University of Sheffield, UK {rmmilner2,t.hain}@sheffield.ac.uk

Purity measures


Cluster purity describes the spread of speakers across a cluster and speaker purity describes the amount of clusters covered by a speaker. An overall purity calculation combines both cluster and speaker purity measures:

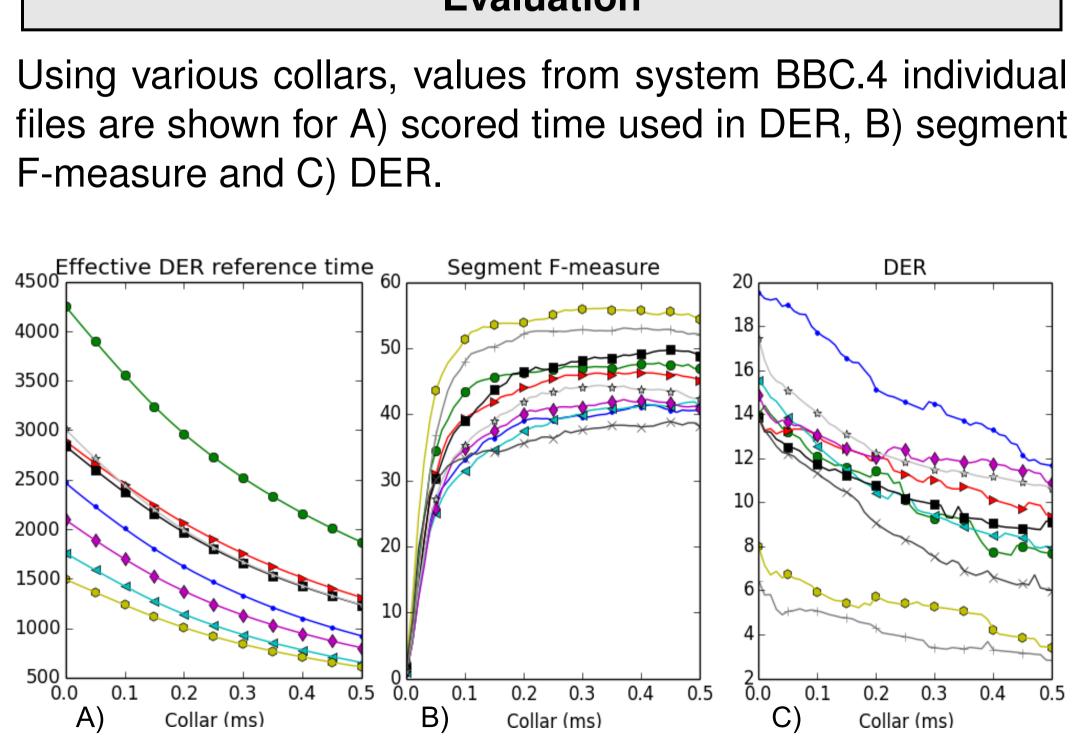
$$K = \sqrt{acp * asp}$$


frame-based, does not evaluate segmentation

Segment F-measure

Matching start and end boundaries

- Collar on reference boundary:
- allows for reference errors and uncertainty
- can be applied to reference boundary times (on either side) allowing for system boundaries to fall within this region
- equivalent to the assumption that the actual boundary is represented by a uniform probability density function (pdf) of certain width around the boundary
- estimate the probability of the hypothesis segment falling into a region using uniform (A), triangular (B) or Gaussian (C) distributions

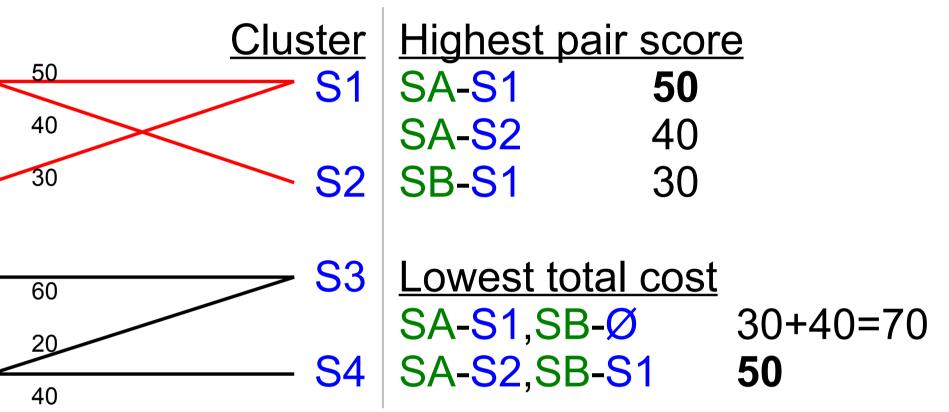

Padding on hypothesised boundary: • allows for uncertainty in hypothesis • larger probabilities introduces more leniency

Mapping speaker labels

- <u>Spkr</u> SA
- SB
- SC
- SD

Multiple hypothesised segments

- Overlapping:



Probability, or score, that a reference speaker, is mapped to hypothesised cluster, given all the observations:

full search, all possible matchings and scores found

• for each speaker-cluster pair, cost is combination of all other pair scores

 combination of speaker-cluster pairs found which gives lowest cost

Non-overlapping:

 smoothing where any adjacent segments with a limited gap are merged

 the hypothesis segment with the matching boundaries and speaker label is chosen to be correct and the other hypoth esised segments are considered as insertions

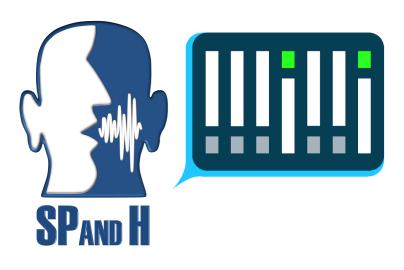
Evaluation

F	ile	;

RT07. RT07. BBC.3 BBC.4

RT07. **RT07** BBC.3 BBC.4

BBC.3 BBC.4


Results (collar 0.1 ms) show:

Data	u-sF	t-sF	g-sF	DER	WER-MGB	WER-TED
RT07.1	2.0	2.5	3.3	32.9	31.5	27.1
RT07.2	0.6	0.6	0.8	43.9	30.2	28.1

Follow on automatic speech recognition (ASR) task for two systems:

- formance

Download: *mini.dcs.shef.ac.uk/resources/sw/dia_segmentfmeasure*

	u-sF	t-sF	g-sF	DER	DPC	bF	K		
SAD									
.1	1.5	1.9	2.2	3.7	2.9	25.4	-		
.2	1.2	1.3	1.4	7.2	15.8	19.8	_		
3	0.1	0.2	0.2	9.9	1.4	79.2	_		
4	72.4	73.6	74.8	2.0	0.2	94.5	_		
DIA									
.1	2.0	2.5	3.3	32.9	1.0	48.2	29.6		
.2	0.6	0.6	0.8	43.9	2.5	23.6	28.6		
3	7.2	7.6	8.2	21.4	0.7	80.4	63.3		
4	38.2	39.3	40.8	11.7	0.4	84.6	72.6		
DIA - INDIVIDUAL FILES									
Зх	5.2	5.9	6.1	17.9	0.9	14.2	66.5		
4t	33.1	33.8	35.4	17.7	0.4	67.4	63.5		
	I	1	1		1	I	ı		

metric is strict in finding matching segments

different distributions allow for more lenient scoring

other metrics can hide segmentation errors

• DER shows large gap whereas WERs are within 2%

segment metric may be a clearer indication of the WERs

Conclusion

• DER (and other metrics) have shortcomings including lack of segmentation evaluation

• Proposed metric matches reference with hypothesised segments for deeper insight into speaker diarisation per-

• metric gives a more stable performance assessment and rank ordering of results