

Fusion-Based Digital Image Correlation Framework for Strain Measurement

Laixi Shi¹, Dehong Liu², Masaki Umeda³, and Norihiko Hana³

Date 4/18/2021

¹Carnegie Mellon University, PA, USA

²Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA

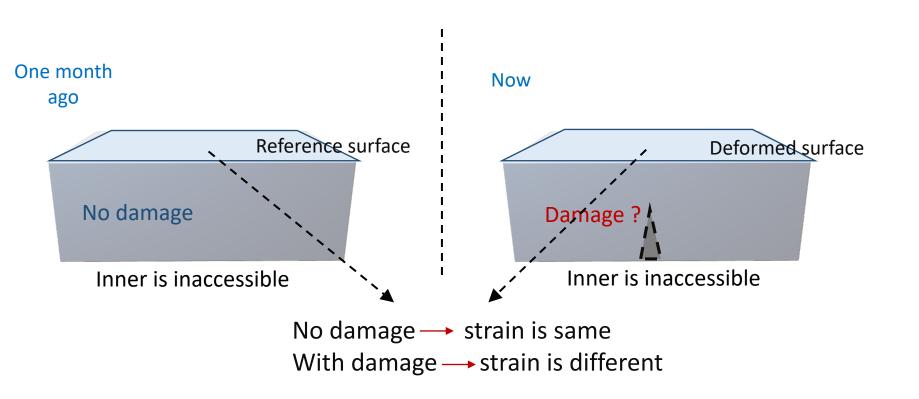
³Mitsubishi Electric, Japan

ICASSP 2021



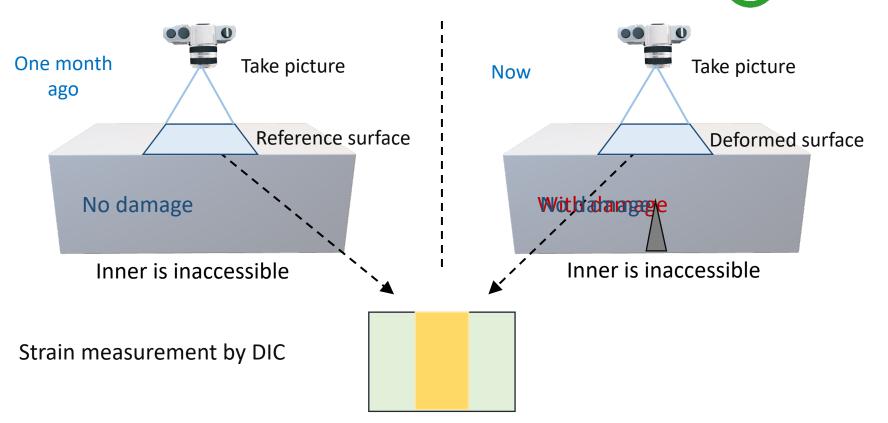
Motivation: Strain Measurement of Materials

• Strain measurement is required in various applications: damage detection, stress intensity estimation [1].



Motivation: Strain Measurement of Materials

- Non-contact optical technologies:
 - Interferometric: holography interferometry.
 - Non-interferometric: digital image correlation (DIC).



[1] Bing Pan, Kemao Qian, Huimin Xie, and Anand Asundi. Two-dimensional digital image correlation for in-planedisplacement and strain measurement: a review. Measurement science and technology, 20(6):062001, 2009

Challenges

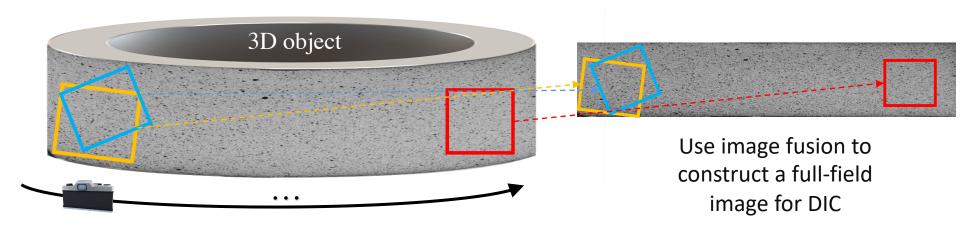
Goal: strain measurement on a curved surface of a large three-dimensional (3D) object.

Challenges:

- 1. Curved surfaces:
 - Classical 2D DIC is limited to planar surfaces.
- 2. Difficulty of experimental source and setup:
 - 3D DIC usually need multi-cameras or markers on surface.
- 3. Large size of the object:
 - Single image can't cover full-field with high-resolution for reasonable DIC results.
 - Images may have blur.

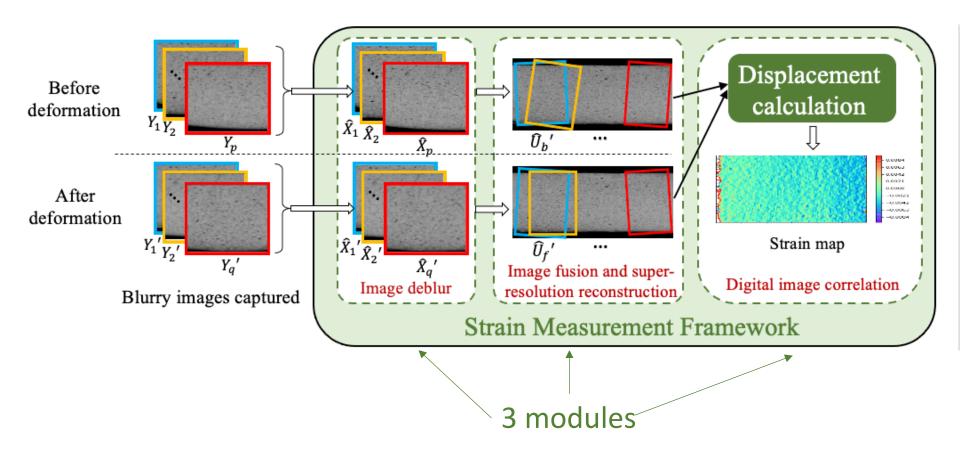
Novelty of Our Framework

	Challenges	Solution of our framework
1.	Curved surfaces	Unfold the curved 3D surface to 2D.
2.	Difficulty of experimental source and setup	Simple experiment setup: One single camera (such as Google pixel 3). No operation on the 3D surface.
3.	Large size of the object	Incorporate image fusion principle into the framework.



Framework Pipeline

 We propose an end-to-end fusion-based DIC framework consisting of image deblur, image fusion and DIC modules.



Presentation Pipeline

- Camera image simulation process
- The proposed DIC framework
 - Image deblur module
 - Image fusion and super-resolution reconstruction module
 - Digital Image Correlation module

Camera Image Simulation Process

- Model parameters:
 - 3D object cylinder: radius = 500mm, height = 80mm.
 - Camera moving trajectory radius: 540 mm (close to the surface).
 - Camera image resolution: 500 * 600 pixels.

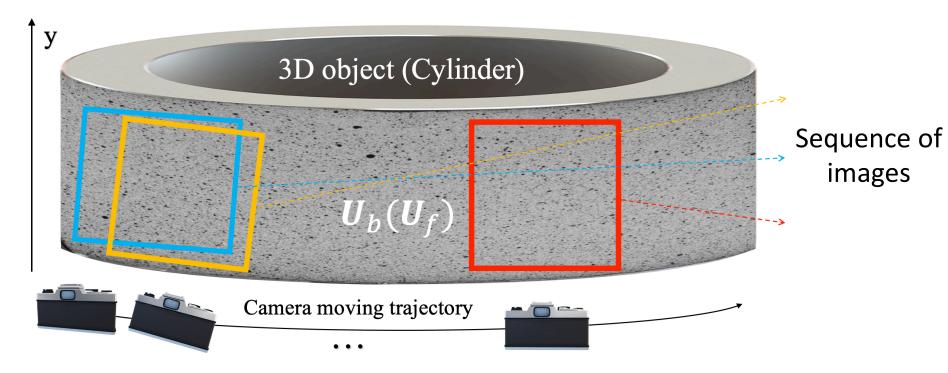
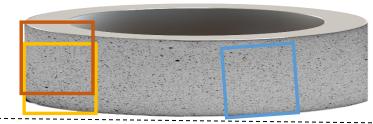
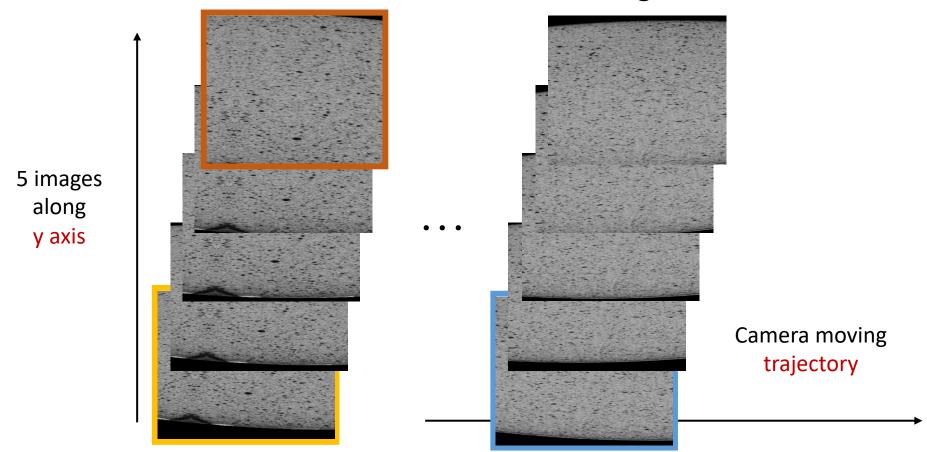


Image Acquisition Process



- Random camera pose: images are captured with unknown random perturbation.
- For surface before or after deformed: 160 images in total.



Presentation Pipeline

- Camera image simulation process
- The proposed DIC framework
 - Image deblur module
 - Image fusion and super-resolution reconstruction module
 - Digital Image Correlation module

Image Deblur Problem Formulation

• Goal: recover the sharp images $\{X_i\}$ and blur kernel K by the blurred observations $\{Y_i\}$.

$$Y_i = K \circledast X_i, \quad i = 1, 2, \cdots, p.$$

- ★ : the circulant convolution operator
- Assumptions: the blur kernel is a truncated Gaussian with radius r_g and unknown standard deviation σ :
 - C_1 : normalization term

$$\boldsymbol{K}(x,y) = \begin{cases} \frac{1}{C_1} \exp(\frac{-(x^2 + y^2)}{2\sigma^2}) & \sqrt{x^2 + y^2} \leq r_g \\ 0 & \sqrt{x^2 + y^2} > r_g, \end{cases}$$

Image Deblur Approach

• Step1: initialize the Gaussian blur kernel K with Wiener filter [2] by minimizing the normalized sparsity loss [1] in the region of σ :

$$\boldsymbol{K}_{0} = \underset{\boldsymbol{K}}{\operatorname{argmin}} \sum_{i=1}^{L} \frac{\left\| \nabla_{x} \overline{\boldsymbol{X}}_{i}(\boldsymbol{K}, \boldsymbol{Y}_{i}) \right\|_{1}}{\left\| \nabla_{x} \overline{\boldsymbol{X}}_{i}(\boldsymbol{K}, \boldsymbol{Y}_{i}) \right\|_{2}} + \frac{\left\| \nabla_{y} \overline{\boldsymbol{X}}_{i}(\boldsymbol{K}, \boldsymbol{Y}_{i}) \right\|_{1}}{\left\| \nabla_{y} \overline{\boldsymbol{X}}_{i}(\boldsymbol{K}, \boldsymbol{Y}_{i}) \right\|_{2}},$$

- $-\overline{X}_i(K,Y_i) = Wiener(K,Y_i)$: the filtered image of Y_i with kernel K.
- $-\nabla_x,\nabla_y$: the derivatives in the x,y directions respectively.
- -L: the total number of the utilized blurred observation images.

^[1] Krishnan, Dilip, Terence Tay, and Rob Fergus. "Blind deconvolution using a normalized sparsity measure." CVPR 2011. IEEE, 2011.

^[2] Rafael C Gonzalez, Richard E Woods, et al. Digital image processing, 2002

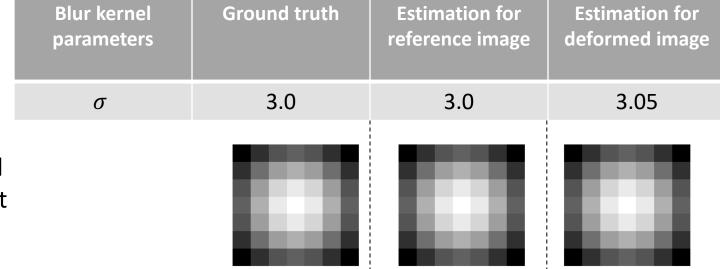
Image Deblur Approach

• Step 2: blind deconvolution: image reconstruction using the initialization blur kernel K_0 by adding Total variation (TV) regularization [1]:

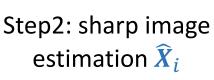
$$\min_{\boldsymbol{K}, \{\boldsymbol{X}_i\}} \sum_{i=1}^{p} \left(\frac{\beta}{2} \|\boldsymbol{Y}_i - \boldsymbol{K} \circledast \boldsymbol{X}_i\|_F^2 + \sum_{j=1}^{m \cdot n} \|\boldsymbol{D}_j \boldsymbol{X}_i\|_2 \right) + \boldsymbol{I}_{\mathcal{G}}(\boldsymbol{K}),$$

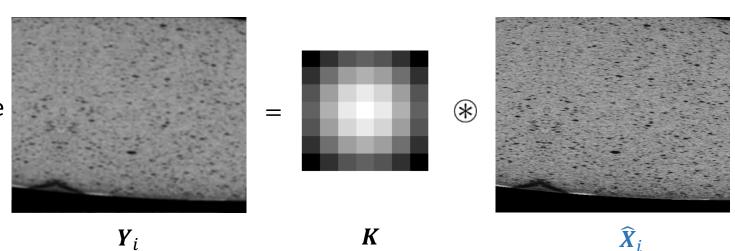
- $-I_{\mathcal{G}}(\cdot)$: indicator to ensure K is a truncated Gaussian.
- $-\beta$: noise weight depending on the noise of Y_i .
- $-\mathbf{D}_{i}$: the derivative of $\mathbf{X}_{i} \in \mathbb{R}^{m \times n}$ at pixel j in both x and y directions.

Image Deblur Results



Step1: blur kernel initialization result





Presentation Pipeline

- Camera image simulation process
- The proposed DIC framework
 - Image deblur module
 - Image fusion and super-resolution reconstruction module
 - Digital Image Correlation module

Pinhole Camera Model

• Pinhole camera model:

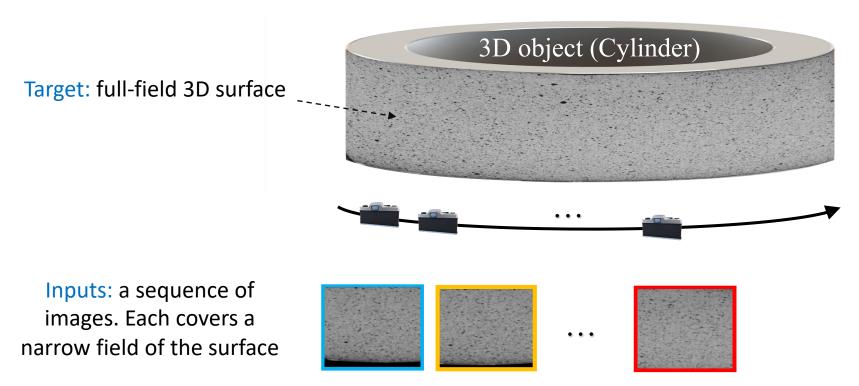
$$\begin{bmatrix} \boldsymbol{x} \\ 1 \end{bmatrix} = \frac{1}{v} \boldsymbol{P}_s \begin{bmatrix} \boldsymbol{R} & \boldsymbol{T} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ 1 \end{bmatrix} = \frac{1}{v} \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} & \boldsymbol{T} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_u \\ y_u \\ z_u \\ 1 \end{bmatrix},$$

- $-R \in \mathbb{R}^{3 \times 3}$, $T \in \mathbb{R}^3$: the unknown rotation and translation (depend on the camera pose).
- $-P_s$: the known perspective matrix of the camera.
- $-\boldsymbol{u}=[x_u,y_u,z_u]^{\mathsf{T}}$: a pixel \boldsymbol{u} on the 3D object surface.
- $-x = [x, y]^{\mathsf{T}}$: the pixel position on the camera focal plane.
- -f is the focal length, v is a pixel-dependent normalization term.

With camera pose, we can project the pixel x in camera plane back to 3D object surface with known 3D geometry.

Image Fusion and Super-Resolution Reconstruction

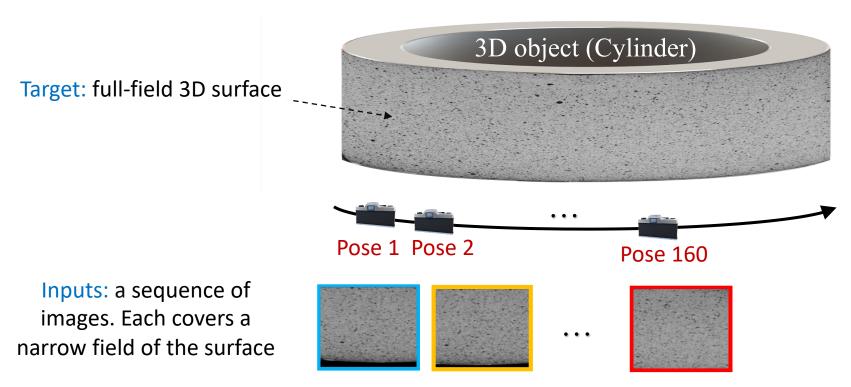
 Goal: reconstruct the super-resolution full-field surface on the 3D object and unfold it to a 2D image.



© MERL

Image Fusion and Super-Resolution Reconstruction

- Goal: reconstruct the super-resolution full-field surface on the 3D object and unfold it to a 2D image.
 - Step1: estimate all the unknown camera poses (R, T) of these images.

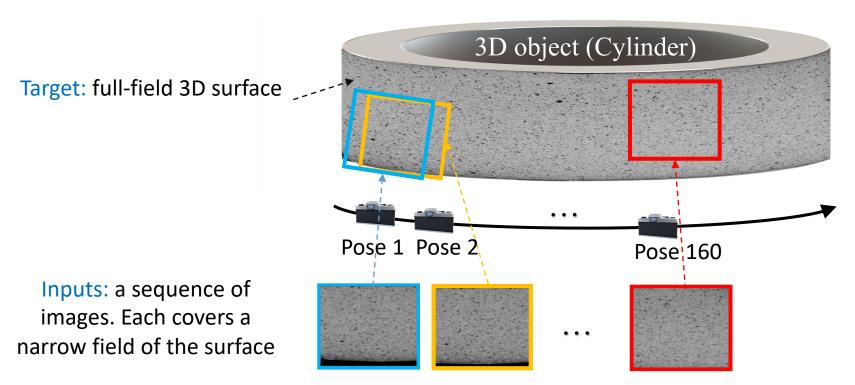


© MERL

Image Fusion and Super-Resolution Reconstruction

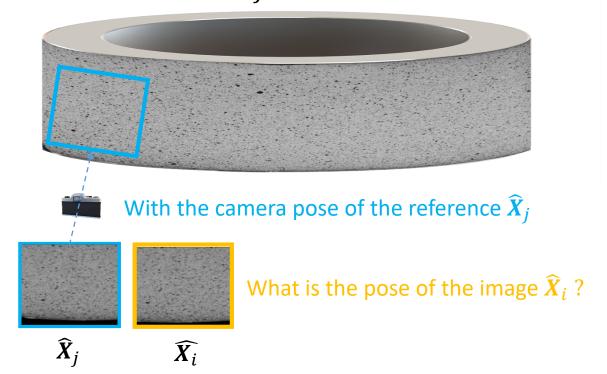
 Goal: reconstruct the super-resolution full-field surface on the 3D object and unfold it to a 2D image.

- Step1: estimate all the unknown camera poses (R, T) of these images.
- Step2: project all pixels of images back to the 3D surface for fusion and interpolate it to get unfolded 2D image.



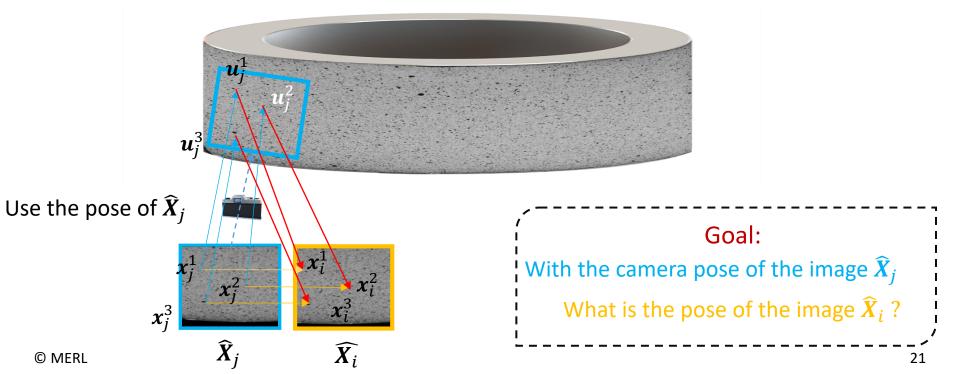
Step 1: formulation of camera pose estimation

- Inputs:
 - Deblurred sequence of images $\{\widehat{X}_i\}$ from the former module.
 - 3D object geometry.
 - The pose of the first image \widehat{X}_1 is known as reference.
- Goal: solve the subproblems: estimate the pose of each \widehat{X}_i , with the pose of a reference image \widehat{X}_i .



Step 1: camera pose estimation of \widehat{X}_i

- Problem decoupling:
 - Find a set of matching SIFT feature points $\mathcal{A}_{(j,i)} = \{(m{x}_j^m, m{x}_i^m)\}$
 - Project $\{x_j^m\}$ to the 3D surface $\{u_j^m = \left[x_{u_j}^m, y_{u_j}^m, z_{u_j}^m\right]^T\}$
 - Perspective-n-point problem (PnP): estimate the camera pose of \widehat{X}_i using the 3D-2D matching points $\mathcal{M}_{(j,i)}=\{(\boldsymbol{u}_i^m,\boldsymbol{x}_i^m)\}$



Step 1: camera pose estimation: PnP problem

 Solve PnP by proposed RWLM: use Levenberg Marquardt algorithm (LM) to solve the re-weighted nonlinear least squares:

$$\min_{\boldsymbol{h}} g(\boldsymbol{h}|\mathcal{M}_{(j,i)}) = \sum_{(\boldsymbol{u}_{j}^{m},\boldsymbol{x}_{i}^{m})\in\mathcal{M}_{(j,i)}} w_{m} \|\hat{\boldsymbol{x}}_{i}(\boldsymbol{u}_{j}^{m},\boldsymbol{h}) - \boldsymbol{x}_{i}^{m}\|_{2}^{2},$$
s.t. $\boldsymbol{R}\boldsymbol{R}^{\top} = \boldsymbol{I},$

- $-h \in \mathbb{R}^{9 \times 1}$: Reparameterized by R, T.
- $-\widehat{x}_i(u_i^m, h)$: the projection result from the 3D point u_i^m to the
- camera focal plane \hat{X}_i with respect to the camera pose h. $-w_m = \frac{1}{\|\hat{x}_i(u_i^m, h) x_i^m\|_2^{\alpha}} : \text{the inverse of the measurement error for}$

the m-th feature.

Step 1: camera pose estimation: PnP

- Refined method RRWLM:
 - Initial the camera poses using the results from the former RWLM:

$$\min_{\boldsymbol{h}} g(\boldsymbol{h} | \mathcal{M}_{(j,i)}) = \sum_{(\boldsymbol{u}_j^m, \boldsymbol{x}_i^m) \in \mathcal{M}_{(j,i)}} w_m | \hat{\boldsymbol{x}}_i(\boldsymbol{u}_j^m, \boldsymbol{h}) - \boldsymbol{x}_i^m |_2^2.$$

– Estimate the camera pose of \widehat{X}_i with others fixed iteratively:

$$\min_{\boldsymbol{h}} g(\boldsymbol{h} | \bigcup_{j \in \mathcal{L}_i} \mathcal{M}_{(j,i)}) = \sum_{(\boldsymbol{u}_j^m, \boldsymbol{x}_i^m) \in \bigcup_{j \in \mathcal{L}_i} \mathcal{M}_{(j,i)}} w_m \| \hat{\boldsymbol{x}}_i(\boldsymbol{u}_j^m, \boldsymbol{h}) - \boldsymbol{x}_i^m \|_2^2.$$

$$-\mathcal{L}_i = \{l|l < i, \hat{X}_l \bigcap \hat{X}_i \neq 0\}$$
: the index set of images overlapping with \hat{X}_i .

Utilize more feature points from previous reference images instead of only one \widehat{X}_i

Image Fusion and Super-Resolution Reconstruction Results

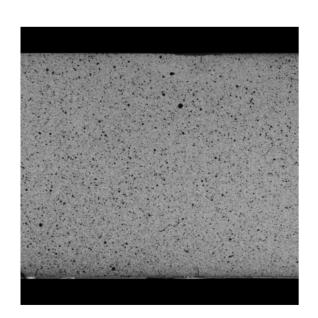
- Comparisons with existing PnP state-of-art methods:
 - Pose error metric is: $\| \hat{R} R, \hat{T} T \|_2$.
 - $-\hat{U}_b', \hat{U}_f'$: image stitching results of the surface before and after deformed.

Method	Average pose error		PSNR of $\hat{m{U}}_b'$ and $\hat{m{U}}_f'$	
Method	$\{\hat{oldsymbol{X}}_i\}_{i=1}^{160}$	$\{\hat{oldsymbol{X}}_i\}_{i=1}^{10}$	$\{\hat{oldsymbol{X}}_i\}_{i=1}^{160}$	$\{\hat{oldsymbol{X}}_i\}_{i=1}^{10}$
LHM	40.67	0.15	11.86	30.63
EPnP+GN	34.23	0.18	11.91	30.63
OPnP+LM	29.35	0.12	12.53	30.67
RWLM	0.22	0.08	28.09	27.84
RRWLM	0.13	0.07	30.18	30.74

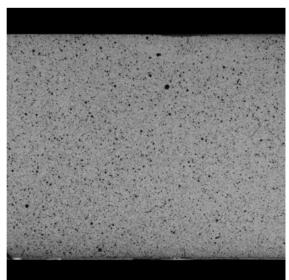
© MERL

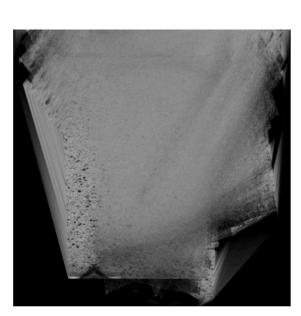
Image Fusion and Super-Resolution Reconstruction Results

 Comparisons with existing PnP state-of-art methods: using all the 160 images in each sequence.



(a) U_b





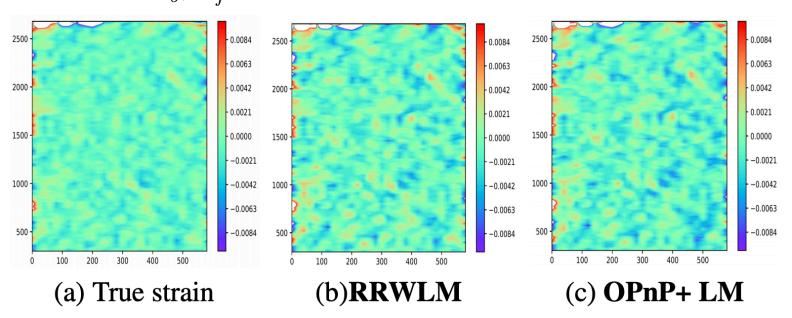
(b) \hat{U}'_b by RRWLM (c) \hat{U}'_b by OPnP + LM

Presentation Pipeline

- Camera image simulation process
- The proposed DIC framework
 - Image deblur module
 - Image fusion and super-resolution reconstruction module
 - Digital Image Correlation module

DIC Module Results

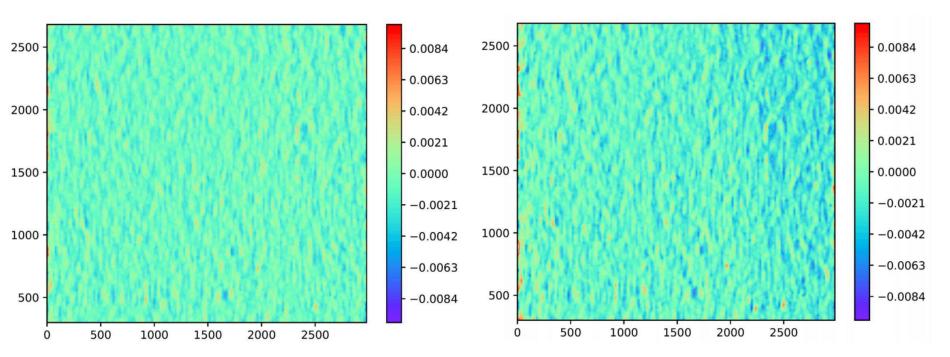
- DIC: Strain measurement in region of interest (ROI): track and compute the displacements of the feature points between the image before (\hat{U}_b') and after deformation (\hat{U}_f') .
- The result for the ROI covered by the first 10 images in each sequence for \hat{U}_b', \hat{U}_f' :



However, the covered region is too small.

DIC Module Results

- The result for the ROI covered by all 160 images:
 - Baseline is not applicable.



(a) Strain using U_b and U_f

(b) Strain via RRWLM fusion

Conclusion

- We propose an end-to-end fusion-based DIC framework for 2D strain measurement along curved surfaces of large 3D objects:
 - Extend the applications for 2D DIC to curved surfaces in large size.
 - Introduce a general pipeline for future works consisting deblurring, image fusion and super-resolution reconstruction, and DIC modules.
- We incorporate image fusion principle into strain measurement framework:
 - The proposed method for the essential PnP problem achieves better image fusion results with comparisons to prior works and meets the stringent requirement for DIC based strain measurement.

Thank you for listening!

Contact: laixis@andrew.cmu.edu liudh@merl.com