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Reliable motion representation, such as optical flow, has proven to have great promotion in action * Implementation: ResNet-152 for spatial stream, and ResNet-18 for spatial feature extraction in temporal

recognition task. stream, both ResNet pre-trained on ImageNet. Flow estimator initialized randomly. For temporal stream,

However, present methods have their drawbacks. we first train the flow estimator, then the classifier, finally fine-tune the network end-to-end.

* Pre-processed methods, including TV-L1 optical flow and PWC-Net optical flow, are time-consuming * \We evaluate our model on UCF-101 and HMDB-51, the test procedure follows CoVIAR [2] and DMC-
and require a large amount of storage space. While the Pwc-Net method has domain gap for action Net [3]. The comparison with other models Is displayed In the left table, the right two tables are ablation

datasets. study of the unsupervised flow estimator, cost volume part and multi-scale network design, and the
* Embedded methods, like PCL-Net, ActionFlowNet, Hidden two-stream, TV-Net, etc, are either efficiency comparison of various similar methods.

Inaccurate or nefficient.
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pyramid and warping operation to reduce large
displacement and estimates flow based on cost
volume from coarse to fine, and then we constrain
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* To obtain reliable optical flow for action datasets, we first apply a shallow network for feature
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_ the prediction with image reconstruction and
extraction. j i edge-aware smoothness losses in a multi-scale
* Then the motion Is estimated in a coarse-to-fine manner, as shown In the right image above. I manner. Classification accuracy and visual
* For each level, the coarse flow Is predicted based on cost volume, which is the correlation of two * Visualization of optical flow from both instances of UE-TSN on two benchmark datasets
feature maps. | QCF-lO_l gnd HMDI_3-51. From left to have quantitatively and qualitatively demonstrated
iL(x) = b(x + up(UH1) (x)) CostVolume! (x1. x2) = ,lr ! (xq) " (x2) right: original RGB image, TV-L1, PWC- the competitive performance with TV-L1, which
N Net and UF-TSN. maintains the efficiency at the same time.

* We use photometric losses and smoothness loss to lead unsupervised motion training.
* Photometric losses for unsupervised training [1].
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* Smoothness loss for clear bound and smooth non-boundary area.
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* The overall loss for unsupervised optical flow Is the combination of the three terms (above right).




