

Paper ID: 1506

A Foveated Video Quality Assessment Model Using Space-Variant Natural Scene Statistics

Yize Jin¹, Todd Goodall², Anjul Patney², Richard Webb², Alan Bovik¹ ¹The University of Texas at Austin, ²Facebook Reality Labs

The University of Texas at Austin

Contents

- Introduction
 - Background
 - Challenges
 - Foveated Video Compression
- Proposed SVBRISQUE Model
 - Limitations of Traditional Models
 - Space-Variant Natural Scene Statistics
 - Summary of the Proposed Method
- Evaluation & Performance
 - Evaluation Framework
 - Results & Conclusion

Background

- In VR, immersive videos are usually rendered on a 3D geometric shape
- Only a certain field of view (FOV) is captured by virtual cameras and displayed in the head mounted displays.

Oculus Quest 2, ~20 ppd

Valve Index, ~15 ppd

Vive Pro, ~15 ppd

Oculus rift s, ~25 ppd

Pimax Vision 8K, ~40 ppd

Challenges in Immersive Videos

- The human vision system can resolve 120 ppd at the fovea
- High dynamic range (HDR), high framerate (HFR)
- Low latency requirement for human interactions (head movements etc.)

In summary, huge bandwidth consumption under low latency constraints.

An Estimate of Video Bandwidth Consumption Based on YouTube Recommendation¹. (Encoder: H264)

Spatial Resolution (ppd)	Temporal Resolution (fps)	Monitor Spatial Resolution (Non-VR)	Estimated Bitrate (Non-VR)	HMD Spatial Resolution (VR)	Estimated Bitrate (VR)
15	30	~ 1024x768	$\sim 1 Mbps$	$\sim 5400 \mathrm{x} 2700$	$\sim 40 Mbps$
30	30	~ 1920x1080	$\sim 4 M b p s$	~ 10800x5400	$\sim 160 Mbps$
	60		$\sim 6 M b p s$		$\sim 240 Mbps$
60	30	~ 3840x1920	$\sim 20 Mbps$	~ 20000x10000	$\sim 600 Mbps$
	60		~ 30Mbps		~900Mbps
	90		$\sim 40 Mbps$		~1200Mbps

¹https://support.google.com/youtube/answer/2853702

Foveated Video Compression

- The human vision system has decreasing acuity away from the foveal center
- Foveated video compression is regaining attention

A Foveated Frame

Foveated Video Compression

- Earlier systems such as CSF-embedded multiresolution-based encoding systems: FMP¹, EFIC²...
- Foveated encoding systems based on modern codecs (AVC/HEVC): C-C. Ho et al.³, J. Ryoo et al.⁴, Romero-Rondon et al.⁵, H. Kim et al.⁶ ...

[1] W. S. Geisler and J. S. Perry, "Real-time foveated multiresolution system for low-bandwidth video communication," SPIE Conference on Human Vision and Electronic Imaging, 1998.

[2] Z. Wang and A. C. Bovik, "Embedded foveation image coding," IEEE Transactions on Image Processing, vol. 10, no. 10, pp. 1397-1410, 2001.

[3] Chia-Chiang Ho, Ja-Ling Wu, and Wen-Huang Cheng, "A practical foveation-based rate-shaping mechanism for MPEG videos," IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 11, pp. 1365-1372, 2005.

[4] J. Ryoo, K. Yun, D. Samaras, S. R. Das, and G. Zelinsky, "Design and evaluation of a foveated video streaming service for commodity client devices," ACM International Conference on Multimedia Systems, New York, 2016

[5] M. F. Romero-Rondon, L. Sassatelli, F. Precioso, and R. Aparicio-Pardo, "Foveated Streaming of Virtual Reality Videos," ACM Multimedia Systems Conference, New York, 2018.

[6] H. Kim, J. Yang, M. Choi, J. Lee, S. Yoon, Y. Kim, and W. Park. "Eye tracking based foveated rendering for 360 VR tiled video," ACM Multimedia Systems Conference, New York, 2018.

Contents

- Introduction
 - Background
 - Challenges
 - Foveated Video Compression
- Proposed SVBRISQUE Model
 - Limitations of Traditional Models
 - Space-Variant Natural Scene Statistics
 - Summary of the Proposed Method
- Evaluation & Performance
 - Evaluation Framework
 - Results & Conclusion

Limitations of Traditional Methods

- Natural Scene Statistics (NSS) have been successfully deployed in NR IQA / VQA models.
- Mean subtracted contrast normalized coefficients of natural images follow a standard Gaussian (normal) distribution, while distortions destroy this regularity.

MSCN Coefficients: $\hat{I} = \frac{I(i, j) - \mu(i, j)}{\sigma(i, j) + C}$

• Underlying assumption in traditional IQA/VQA: distortions and the NSS features are invariant across spatial domain.

No longer true for foveated videos!

MSCN Distribution

Space-Variant Natural Scene Statistics

Space-Variant Natural Scene Statistics

Smoothness assumption in concentric regions

Estimating the parameters of SV-GGD and SV-AGGD models.

- Maximum likelihood is a functional of these space-variant parameters.
- Locally stationary assumption. Can be extended to ring-shaped concentric regions.

A Spatial Neural Noise Model

- Introduce a neural noise model.
- Account for uncertainty of visual perception.
- Add a small amount of variation on saturated, over- or under-exposed regions.

The Neural Noise Model

Saturated Regions in indoor and outdoor scenes

MSCN Distribution Before (left) and After (right) Applying Neural Noise Model

Summary of the Proposed Method

Overview of SVBRISQUE

Contents

- Introduction
 - Background
 - Challenges
 - Foveated Video Compression
- Proposed SVBRISQUE Model
 - Limitations of Traditional Models
 - Space-Variant Natural Scene Statistics
 - Summary of the Proposed Method
- Evaluation & Performance
 - Evaluation Framework
 - Results & Conclusion

Evaluation Framework

- The newly created LIVE-FBT-FCVR databases¹ were used to compare SVBRISQUE with existing foveated IQA/VQA models.
- To recover foveated viewing experience, we adopted a viewport-based assessment framework.
- We sampled 18 viewing directions, and created 18 foveated viewport videos for each distortion, whose field of view is 90° and resolution is 1024×1024.
- SVR with RBF kernel was used to train a model on the obtained features. Median performance was reported after 1000 train-test splits.

¹Y. Jin, M. Chen, T. Goodall, A. Patney and A. C. Bovik, "Subjective and Objective Quality Assessment of 2D and 3D Foveated Video Compression in Virtual Reality," in *IEEE Transactions on Image Processing*, vol. 30, pp. 5905-5919, 2021

Evaluation & Performance

Results & Conclusion

	Methods	SROCC↑	KROCC ↑	PLCC↑	RMSE↓
2D	BRISQUE	0.797 ± 0.22	0.639 ± 0.18	$0.708 {\pm} 0.18$	9.60 ± 3.29
	SVBRISQUE	$0.900 {\pm} 0.11$	$0.736 {\pm} 0.12$	$0.884 {\pm} 0.10$	6.91 ± 2.53
	NIQE	0.605 ± 0.32	0.457 ± 0.24	0.675 ± 0.31	6.47±2.27
	V-BLIINDS	0.440 ± 0.25	0.327 ± 0.20	0.431 ± 0.25	11.11 ± 2.07
	TLVQM	0.509 ± 0.36	$0.381 {\pm} 0.26$	$0.470 {\pm} 0.36$	10.38 ± 3.09
	FWQI	0.791	0.785	0.591	_
	FASSIM	0.757	0.742	0.553	-
3D	BRISQUE	0.751 ± 0.19	0.587 ± 0.15	0.699 ± 0.17	9.11±2.97
	SVBRISQUE	$0.875 {\pm} 0.12$	$0.695 {\pm} 0.12$	$0.877 {\pm} 0.12$	5.99±1.79
	NIQE	0.732 ± 0.19	0.570 ± 0.15	$0.781 {\pm} 0.17$	6.59 ± 2.00
	V-BLIINDS	0.391 ± 0.24	0.283 ± 0.18	$0.300 {\pm} 0.22$	9.33 ± 1.50
	TLVQM	0.696 ± 0.21	$0.517 {\pm} 0.17$	$0.699 {\pm} 0.21$	7.82 ± 2.43
	FWQI	0.804	0.784	0.592	-
	FASSIM	0.755	0.740	0.543	-

Conclusion

We have designed a blind foveated VQA model called SVBRISQUE which relies on space-variant NSS. The model achieved SOTA performance on LIVE-FBT-FCVR databases.

Limitation

• The proposed method rely on foveation radii information inherited from the databases.

Future Directions

- Remove the dependence on foveation radii information.
- Further improve the performance.

Evaluation & Performance

Thank you!