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Fourier Phase Retrieval Problem

0 Recovering a signal from its Fourier amplitude measurements
0 Equivalent to recovering a signal from its autocorrelation
a0 Nonlinear and nonconvex optimization problem

0 Robust recovery

2 Good initialization
2 Prior information about the sparsity or support of the target signal

a Applications:
o X-ray crystallography [1], diffraction imaging [2], ptychography [3]

[1] J. Miao, T. Ishikawa, I. Robinson, and M. Murnane, “Beyond crystallography: Diffractive imaging using coherent x-ray light sources ,” Science (New York, N.Y.), vol.348, pp. 530-5, 05 2015
[2] J. Miao, R. L. Sandberg, and C. Song, “Coherent x-ray diffraction imaging ,”” |EEE Journal of Selected Topics in Quantum Electronics, vol. 18, no. 1, pp. 399-410, Jan 2012.
[3] G. Zheng, R. Horstmeyer, and Ch. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” in Nature photonics, 2013



Phase Retrieval Methods

0 Classical phase retrieval methods
o Error reduction and alternating minimization algorithms
(Fienup HIO [4] and Gerchberg-Saxton [5])
o Exploit prior knowledge about the non-negativity and support of the target object in the scene

a Convex relaxation methods
o PhaseLift [6] and PhaseCut [7]
0 Lifting the problem to a high-dimensional space
0 Theoretical recovery guarantees only exist for random measurements

a Directly solving the non-convex optimization problem
o Wirtinger Flow [8], Amplitude Flow [9] and their variants
o Require careful initialization to avoid local minima

[4] J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. , Jul 1978

[5] R. W. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik, 1972

[6] E. J. Candes, et. al, “Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming,” CPAM, 2012.

[71 1. Waldspurger, A. Aspremont, and S. Mallat, “Phase recovery, maxcut and complex semidefinite programming,” Mathematical Programming, Feb 2015
[8] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval via wirtinger flow: Theory and algorithms ,” IEEE Transactions on Information Theory, April 2015.
[9] G. Wang, et. al “Solving systems of random quadratic equations via truncated amplitude flow,” IEEE Trans on Information Theory, Feb 2018



Fourier Phase Retrieval with Known Reference

a Linear method
0 Presence of a reference signal makes the signal recovery problem linear [10, 11, 13]

0 The existing methods only work if the support of the reference and target signals are
sufficiently separated [10,11, 12, 13]

2 Nonlinear method

2 No separation condition is needed

2 The known signal with any arbitrary size and shapes can be imposed as an image domain
constraint

2 The method is a nonlinear iterative method based on Alternating Minimization and
Gradient Descent [14]

[10] D. A. Barmherzig, J. Sun, E. J. Candes, T. J. Lane, and P Li, “Holographic phase retrieval and optimal reference design ,” Inverse Problems, 2019
[11] M. Sicairos and J. R. Fienup, “Holography with extended reference by autocorrelation linear differential operation,” Opt. Express , Dec 2007.
[12] M. Sicairos and J. R. Fienup, “Direct image reconstruction from a Fourier intensity pattern using heraldo., ” Optics letters, 2008

[13] Z. Yuan and H. Wang, “Phase retrieval with back-ground information ,” Inverse Problems, 2019

[14] F. Arab and M. S. Asif, "Fourier Phase Retrieval with Arbitrary Reference Signal,” ICASSP 2020



Fourier Phase Retrieval with Known Reference
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Problem Formulation

a Fourier phase retrieval can be written as the following nonlinear
deconvolution problem

min R — X xX|}3

a X Is the unknown image
0 R is the known 2D observed autocorrelation measurements of X
0 * denotes 2D cross-correlation operator



Problem Formulation

2 We can vectorize the matrices and write the autocorrelation equation

dS
vec(R) = C'xvec(X),

2 Where Cy Is the Toeplitz matrix of X, vec( R ) and vec( X ) are
vectorized versions of R and X. We can also rewrite IS as

I'r qu 0 O 0 X1
I qu—l CXq O O X2
szz = Z % X3 rs — Cxq_2 Cxq_l Cxq 0 X3 ’
Cross-correlation with column | - : : : . ; ;
xl _rq_ N Cxl CXQ Cx3 . o e Cxq_ _Xq_




Proposed Method: Sequential Deconvolution Method

0 Reference as known columns on both sides

SPL  ry = CLoxgs 4 Cuxa = [OL, Oy {XX]

A

Step 2: rs — Cxq_lﬁz ~ [C'fcl C’xq] [qul.

1=k—1

A R Xk
Step k: et+1 — Z qu—k+ix?3+1 ~ [C,lcl Cxq} [XZ+1] .

72.=1

0 Reference as known columns on one side
2 First estimate few columns from the other sides using linear inverse problem
0 Then, everything is similar to the first scenario: estimate two columns at a time



Proposed Method

Algorithm 1 Proposed sequential recovery method

Inputs: ro, ..., rx 11, X1, Xg, and K K: depends on the number of columns in the image

fork=1,...K do
i—=k—1

)/\(q_k l _1 2 ~
S e T R M
i=1
end for We estimate two columns at each iteration

~

Output: X2, ..., X4—1




Stability and Recovery Conditions

0 Stability of the algorithm at each step
o It depends only on the condition of matrix H = |Cy, Cx,]

o For special references such as two pinholes at two sides of the image, H is full rank, for other
references, we should make sure that it is full column rank

2 The Toeplitz matrices of the first and last columns need to have incoherent columns

0 Stability of the overall system
0 The overall system, as shown in the system matrix, depends on the pixel values in the unknown
Image
0 This condition is much harder to evaluate
0 Stability of the proposed sequential method

o Presence of measurement noise and finite precision of multiplications and additions in the cross-
correlation terms causes an accumulation of error

0 If the system is not well-conditioned, it will cause instability
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Experiments

a Motivation

2 The main motivation comes from “looking around the corner problem”

The reflectivity of the target objects in the scene that are hidden from the view is estimated

We are given the autocorrelation of the entire scene (objects within the direct line of sight and
those hidden around the corner)

In our experiments, some parts of the scene such as the background or border around the object
are known apriori

2 Another motivation is related to the Fourier phase retrieval for a video sequence

We may perfectly know parts of the scene that are static (e.g., background) and can be
Incorporated as side information
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Simulation Results

0 Sequential recovery with a known border
2 First scenario: reference border is two pinholes on both sides

0 Dataset
Sample natural images

2 Other parameters
Border width = 8 pixels
Different amounts of Gaussian measurement noise
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Simulation Results

0 Sequential recovery with a known border

0 Second scenario: a border with variable width around the images is known

(©)]
o

1N
o

——Sequence 1

0 Dataset
Frames from three sequences of KTH dataset
0 Other parameters ~ Sequence 1 boxing Sequence 2: handwaving Sequence3 handclapplng
Border width = variable 1 e e
NoO noise
Known area = ratio of the %
pixels in the known border °
to the total number of pixels g 5 mesr=——
< —e—Sequence 2
—4—Sequence 3

0.4

Known Area (%)

Average PSNR (dB)

N
o

—e—Sequence 2|
——Sequence 3

o

20 30 40 50 60

40 50 60

Known Area (%)



0o Sequential recovery with a known patch

Simulation Results

0 Dataset

Sample natural images

2 Other parameters

A pinhole reference is added to the right side of the image .

Different amounts of separation (h)
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Simulation Results

a Comparison to the existing methods
Linear method is not applicable in this scenario
0 Dataset

Sample natural images and video frames from KTH dataset
Known pinhole

Known border: 15-pixel wide

Alternating minimization
without side information
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Summary

a We proposed a sequential method to solve Fourier phase retrieval problem with a
known reference

0 No constraints on the separation between known reference and target image
a We solved the problem as a sequence of deconvolutions

o Simulation results showed that our method can reliably recover images from Fourier
amplitude measurements under different settings for reference and measurement
noise levels
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