SAROD: EFFICIENT END-TO-END OBJECT DETECTION ON SAR IMAGES WITH REINFORCEMENT LEARNING

IEEE ICIP2021

September 2021, Anchorage, Alaska, USA - Virtual

Data-drive AI Security HCI (DASH) Lab Sungkyunkwan University, South Korea AIRS Company, Hyundai Motor Group, Republic of Korea

JunHyung Kang* Hyeonseong Jeon* gogo0920@g.skku.edu

cutz@hyundai.com

Youngoh Bang byo7000@g.skku.edu Simon S. Woo swoo@g.skku.edu

*Equal contribution

Introduction: Object Detection on Satellite images

Natural Images

Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." European conference on computer vision. Springer, Cham, 2014.

• Satellite Images

Xia, Gui-Song, et al. "DOTA: A large-scale dataset for object detection in aerial images." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

Introduction: Object Detection on SAR images

• Electro-Optical (EO) Satellite Images

https://ksatdb.kari.re.kr https://eol.jsc.nasa.gov

Synthetic Aperture Radar (SAR) Satellite Images

Wei, Shunjun, et al. "HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation." leee Access 8 (2020): 120234-120254.

• Using SAR images which have gained much attention recently due to their persistency and endurability in challenging weather conditions.

• Minimizing High-Resolution (HR) data usage for efficiency, while maintaining high accuracy.

• Applying an end-to-end framework so that pre-trained detection models are not required.

Our Proposal Architecture: SAROD

<Architecture Overview>

Object Detectors

• Fine and Coarse-grained object detectors

We employ both fine-grained object detector and light coarse-grained object detector based on

input size (e.g., High-Resolution (480) vs. Low-Resolution (96) pixels)

Policy Agent

- ResNet-based Policy network
- 1) Determines the efficient image patches

2) Performs binary classification in each patch (High resolution vs. Low-resolution)

-LAB

Reward Function Design

- 1. Difference of precision reward (R_{diff})
 - Favors policies that choose the LR patches, only if the precision is maintained.
 - Otherwise, minimize the HR patches.

$$R_{diff} = \sum_{n=1}^{m} a \cdot (P_f - P_c) - (1 - a) \cdot (P_f - P_c)$$
$$P_f = Prec(\hat{y}_f^n, Y^n), \ P_c = Prec(\hat{y}_c^n, Y^n) + \beta.$$

Reward Function Design

- 2. Acquisition cost reward (R_{aqcost})
 - Provides more rewards for the action choosing the LR patches

$$R_{aqcost} = (m - \sum_{n=1}^{m} a_c^n)/m),$$

- 3. Objectness reward (R_{obj})
 - Penalizes, if HR patches are chosen when there is no object

$$R_{obj} = \sum_{n=1}^{m} \|s_i - Y_n^{obj}\|_1^1,$$

Reward Function Design

• Final reward function

Based on these three reward terms, we calculate the final reward function R.

$$R = R_{diff} + \lambda_{aqcost} R_{aqcost} + \lambda_{obj} R_{obj},$$

RL Agent Training

• REINFORCE algorithm + Advantage function

The advantage function as a Temporal Difference (TD), which reduces the variance

$$\nabla_{\theta_{rl}} J = \mathbb{E} \Big[A \sum_{n=1}^{m} \nabla_{\theta_{rl}} \log(s^n a^n + (1-s^n)(1-a^n)) \Big],$$
$$A = R(a, Y) - R(\hat{a}, Y),$$

• With clipping function \rightarrow decay

$$s = \alpha s + (1 - \alpha)(1 - s),$$

$$\alpha = clip(\alpha + epoch * 0.001, 0.6, 0.95),$$

KWAN

• Inference Stage

Training details

Dataset description

- High Resolution SAR Images Dataset (HRSID)
 - 16,951 ships on 5,604 images, cropped 800×800 pixel size
 - \circ $\,$ 65% train and 35% test sets

Training details

Dataset description

- Dataset Preprocessing
 - HRSID dataset image resized to create low-resolution image patches
 - Overlapping size=80, *l_fine* =480 for high resolution patch image, and *l_coarse*=96 for low resolution patch image

Experimental Results

mAP and HR ratio Performance on HRSID Dataset					
Method	Resolution	mAP (%)	HR Ratio		
Faster R-CNN (ResNet-50)	480	80.1	1		
RetinaNet	480	66.6	1		
YOLOv3	480	78.1	1		
YOLOv5	480	84.4	1		
HRSDNet	1,000	89.3	1		
EfficientOD (YOLOv5)	HR:480 / LR:96	75.3	0.98		
Ours (YOLOv5)	HR:480 / LR:96	83.2	0.89		

Ablation Study

Need for Objectness reward (r) & Advantage function (a)					
Method	Resolution	mAP (%)	HR Ratio		
YOLOv5 (fine)	480	84.4	1		
YOLOv5 (coarse)	96	53.5	0		
Ours (without <i>r</i> , <i>a</i>)	HR:480 / LR:96	74.5	0.73		
Ours (without <i>r</i>)	HR:480 / LR:96	84.4	1		
Ours	HR:480 / LR:96	83.2	0.89		

(UN KWAN

SU

UNIVERSITY

Effect of larger image sizes and runtime performance

Method	Resolution	Runtime (ms)	HR Ratio
YOLOv5 (fine)	4,800	956.7	1
YOLOv5 (coarse)	960	235.4	0
Ours	HR:4,800 / LR:960	885.5	0.89

Contribution

- 1. We apply RL for object detection in SAR images, achieving high performance and improving efficiency.
- 2. We propose a novel framework SAROD proposing the entire training and inference process into the single end-to-end learning pipeline.
- 3. We develop the new reward function for robust training of policy network to achieve the optimal decision by carefully selecting the LR vs. HR images.
- 4. We demonstrate the effectiveness of SAROD with extensive experiments.

https://dash-lab.github.io/ https://airsc.ai/

Code is available here:

https://github.com/JunHyungKang/SAROD_ICIP

