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We have a two-layer autoregressive network to model the sam- X Ground Truth
pling distribution of binary data X € {0,1}"*¥_ The task
is to predict the d-th entry x4 given the previous r entries,
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The model takes x4 () as input and outputs a prediction for
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where the first-layer weights are U € R™*", the second-layer . |
weights are a € R™, the hidden layer, h € R™, uses ReLU Figure: P local (constrained)
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activation, and the output uses sigmoid activation. The train- models are aggregated to create the  Figure: Local geometry of the
ing problem is then olobal model via summation and constraints with optimization variables
B m regularization. v and w.
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where the loss £ is binary cross- entropy (BCE). Fach term D; X, is an arbitrary mask of X, giving us the tollowing: Figure: Ground trpth and gengrated Images from MNIST
X, o1 — o First term: aggregate BCE loss over P local linear models, where the local test data. CVXPY implementations trained on ;QVQCtOfS
O OO0 . Olacr & feature matrix is a randomly masked version of the global feature matrix. (1.ess than all 1m.age). Imgges generated by predmt.mg cach
tQ O - Q<N e Second term: group lasso regularization to merge local models into global. pixel g”e“ previous 10 pixels in the ground truth image (not
: :}‘@ . | | | recursively).
OO - Q:\Q e Constraints: dot products of local variables with local data points are
OO - Q’{Q positive, while those with the other data points are negative. (Geometrically, —
: 5 we construct two planes, P, and P, perpendicular to the two local 0.90 - — 1
OO0 -- Q]ﬂ‘@ optimization variables. The local models use all of the data (and no other >0 a5
B OO0 - Op=2c™ data) in the intersection of the two half-spaces containing the local variables -
761 units — to compute their contribution to the global loss. g 0-80 — pytorch hinge
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Figure: Autoregressive model for an image, with r = 3. nonconvex
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Exact Convex Program and Theorem . Hime {sec | o
Relaxed Convex Program Figure: Accuracy on MNIST val data during training.
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I[f m > m* the non-convex problem has the same optimal min E( > DiX (v — wj), y) + 62 _(l[vill2 + [Jwill2) Concluding Remarks
value as the convex problem . i, Wi Kl =1 | i—1
. < f: DX, | ) 8 f: (il + il Hinge Loss ppro;flmatlon , o 'Two-layer autoregressive models are equivalent to constrained,
min - v, —w;), Y|+ Vil lo + [|w;l|s | . .
v ~ 14X (r)\ Y 2 P ( 1 mmp L( Z 1)@)((T)(,l)Z L wi); y> 4 6 Z(HUZHQ 4+ szHQ) regulamzee. 10g18t1(3 regressioln.
subject to Gv; > 0,Gyw; > 0 fori=1,..., P, (Wi = =1 o Relaxing the constraints allows us to use batched gradient
where G; = (2D; — I,,)X|,). Furthermore, given optimal +p Zl 1" ((Gvy)s + (Gw;)+) descent: This comblged with sampling the diagonal matrices
solutions v}, w; for this problem such that at most one of v; Sampling Diagonai_l\/[atrices results in faster training and better performance.
or w; is non-zero for all ¢ = 1,...., P, an optimal solution for The number of diagonal matrices P needed explodes quickly (Pilanci 2020): ® Possible extensions: deeper autoregressive nefworks, ncluding
the non-convex problem with m” neurons is with N = 1000 sequences of dimension D = 100 and r = 10 (a small dataset), PiceliNN, Wavellet, mage- GEL.
(= v\/ |v7|]2) it |[v;[[2 >0 P < O(10°Y). We sample P diagonal matrices by generating P uniformly Referen “e: M. Pilanct and 1. Ergen, "Neural Networks ate Convex
(u,af) = H”Ui IE Regularizers: Exact Polynomial-Time Convex Optimization Formulations for
Ji? =i ( ﬁvi = \/sz o) if |Jw?|[, > 0 random vectors u; and picking D; = 1| X, u; > 0] for i = 1, P Two-Layer Networks,” ICML 2020.
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