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Preliminaries

We have a two-layer autoregressive network to model the sam-
pling distribution of binary data X ∈ {0, 1}N×M . The task
is to predict the d-th entry xd given the previous r entries,

x<d,(r) = [xd−r−1, xd−r, . . . , xd−1] ∈ Rr.

The model takes x<d,(r) as input and outputs a prediction for
the mean parameter of xd’s Bernoulli distribution:

σ(αTh) = σ(αT (Ux<d,(r))+),
where the first-layer weights are U ∈ Rm×r, the second-layer
weights are α ∈ Rm, the hidden layer, h ∈ Rm, uses ReLU
activation, and the output uses sigmoid activation. The train-
ing problem is then

min
{αj,uj}mj=1

L
(
αT (UXT

(r))+,y
)

+ β

2
m∑
j=1

(||uj||22 + α2
j),

where the loss L is binary cross-entropy (BCE).

Figure: Autoregressive model for an image, with r = 3.

Exact Convex Program and Theorem

If m ≥ m∗, the non-convex problem has the same optimal
value as the convex problem

min
{vi,wi}Pi=1

L
( P∑
i=1
DiX(r)(vi −wi),y

)
+ β

P∑
i=1

(||vi||2 + ||wi||2)

subject to Givi ≥ 0,Giwi ≥ 0 for i = 1, . . . , P,
where Gi = (2Di − In)X(r). Furthermore, given optimal
solutions v∗i ,w∗i for this problem such that at most one of v∗i
or w∗i is non-zero for all i = 1, . . . , P , an optimal solution for
the non-convex problem with m∗ neurons is

(u∗ji, α
∗
ji
) =
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||v∗i ||2

,
√
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.

Polynomial-Time Theorem

Interpretation of Exact Convex Program

Figure: P local (constrained)
models are aggregated to create the
global model via summation and
regularization.

Figure: Local geometry of the
constraints with optimization variables
v and w.

Each term DiX(r) is an arbitrary mask of X(r), giving us the following:
•First term: aggregate BCE loss over P local linear models, where the local
feature matrix is a randomly masked version of the global feature matrix.
•Second term: group lasso regularization to merge local models into global.
•Constraints: dot products of local variables with local data points are
positive, while those with the other data points are negative. Geometrically,
we construct two planes, Pv and Pw, perpendicular to the two local
optimization variables. The local models use all of the data (and no other
data) in the intersection of the two half-spaces containing the local variables
to compute their contribution to the global loss.

Tractable Formulations

Relaxed Convex Program

min
{vi,wi}Pi=1

L
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i=1
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)
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Hinge Loss Approximation

min
{vi,wi}Pi=1

L
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)
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1T ((Givi)+ + (Giwi)+)

Sampling Diagonal Matrices
The number of diagonal matrices P needed explodes quickly (Pilanci 2020):
with N = 1000 sequences of dimension D = 100 and r = 10 (a small dataset),
P ≤ O(1050). We sample P̃ diagonal matrices by generating P̃ uniformly
random vectors ui and picking Di = 1[X(r)ui ≥ 0] for i = 1, . . . , P̃ .

Numerical Experiments

Figure: Ground truth and generated images from MNIST
test data. CVXPY implementations trained on 10 vectors
(less than an image). Images generated by predicting each
pixel given previous 10 pixels in the ground truth image (not
recursively).

Figure: Accuracy on MNIST val data during training.

Concluding Remarks

•Two-layer autoregressive models are equivalent to constrained,
regularized logistic regression.
•Relaxing the constraints allows us to use batched gradient
descent. This combined with sampling the diagonal matrices
results in faster training and better performance.
•Possible extensions: deeper autoregressive networks, including
PixelRNN, WaveNet, Image-GPT.
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