Automatic trimap generation by a multimodal neural network

Masaki Taniguchi⁺, Taro Tezuka[‡]

⁺University of Tsukuba, Graduate School of Library, Information and Media Studies [‡]University of Tsukuba, Faculty of Library, Information and Media Science

Paper #1900

Code: 11.6 – Computational Imaging Methods and Models

What is trimap?

• Alpha matte: map for composing FG and BG image

$$I_i = \alpha_i F_i + (1 - \alpha_i) B_i \qquad \alpha_i = \alpha_i F_i + (1 - \alpha_i) B_i = \alpha_i$$

- Task contains 2 stege
 - Roughly main object detection (creating trimap)

$\alpha_i \in [0,1]$

Why trimap is important for alpha matting

 Separate trimap generation stage and fine matting stage → Can fix main object detection result when it missed

What is the difficulty of trimap generation?

- No GT trimap data
 - difficult to define GT trimap
- Less public alpha matting dataset
 - Adobe Image Matting^[1]: 493 unique training image
 - Distinctions-646^[2]: 646 unique training image
 - Semantic Human Matting^[3] (not public): 35,513 unique images

Existing trimap generation method **Semantic Human Matting**^[3]

- End-to-end alpha matting training
- Using huge dataset \rightarrow 35,513 unique human images (not public)

\rightarrow output trimap as intermediate representation (Fusion module)

Our method

- Multimodal training by pseudo trimap and saliency map dataset Increase number of GT trimap image
- Additional end-to-end training by GT alpha matte dataset
 - Fine-tune trimaps by alpha matting loss

STEP1 - Train main object detection stage

- Train saliency map and trimap multimodality
- Introduce PFAN^[4] network (SoTA saliency map prediction network) • DUTS image dataset^[5]: (Train: 10,553, Test: 1,000)

STEP2 - Fine-tune with end-to-end training

- Combine pre-trained fine matting stage
- Additional training by Distinctions-646^[2]
- Adopt the thickness of unknown part to the object

Result

- The main object in the image is accurately detected
- Unknown parts become thicker at the complex boundaries

original photos

trimaps

Quantitative comparison: network structure

Method	SAD	MSE (× 10^{-2})	Gradient ($\times 10^3$)	Connectivity
ECSSD				
VGG16 + PSPNet	11.499	6.098	2.247	1.236
VGG16 + proposed	9.219	4.865	1.812	1.127
Resnet18 + PSPNet	10.814	5.730	2.131	1.231
Resnet18 + proposed	8.069	4.075	1.478	1.161
Densenet + PSPNet	8.933	4.706	1.721	1.021
Densenet + proposed	7.265	3.596	1.287	1.021
Distinction-646				
VGG16 + PSPNet	14.552	6.550	2.304	1.838
VGG16 + proposed	13.228	6.038	2.103	1.716
Resnet18 + PSPNet	14.918	6.875	2.419	1.815
Resnet18 + proposed	14.215	6.776	2.439	1.480
Densenet + PSPNet	21.106	10.789	4.013	1.663
Densenet + proposed	13.619	6.421	2.267	1.509

Table 1. Performance comparison.

Quantitative comparison: with- and without-each components

Method	SAD	MSE (× 10^{-2})	Gradient $(\times 10^3)$	Connectivity
no SA	16.618	8.062	2.903	1.726
no CA	15.904	7.587	2.707	1.877
no L_S	14.837	7.037	2.483	1.692
no L_{lpha}	16.332	8.154	3.024	1.364
proposed	14.215	6.776	2.439	1.480

and L_{α} are saliency map loss and alpha matte loss.

Table 2. Performance with and without each component. L_S

Qualitative comparision: with- and without-step2 training

trimap

photo

alpha matte

with step2 training

photo + alpha ch

Without-step2 training

References

- Vision and Pattern Recognition. 2017.
- 2020, pp. 13676-13685.
- human matting," in ACM Multimedia, 2018, pp. 618-626.
- 4. Zhao, Ting, and Xiangqian Wu. "Pyramid feature attention network for saliency detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

1. Xu, Ning, et al. "Deep image matting." Proceedings of the IEEE Conference on Computer

2. Yu Qiao, Yuhao Liu, Xin Yang, Dongsheng Zhou, Mingliang Xu, Qiang Zhang, and Xiaopeng Wei, "Attentionguided hierarchical structure aggregation for image matting," in CVPR,

3. Quan Chen, Tiezheng Ge, Yanyu Xu, Zhiqiang Zhang, Xinxin Yang, and Kun Gai, "Semantic

5. Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng, Dong Wang, Baocai Yin, and Xiang Ruan, "Learning to detect salient objects with image-level supervision," in CVPR, 2017.

Thank you for listening