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What is trimap?

* Alpha matte: map for composing FG and BG image
I, = o, F; + (1 — Oéz)Bz Q; € [O, 1]
e Task contains 2 stege
e Roughly main object detection (creating trimap)

* Fine scale matting (creating alpha matte)
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Images from: Deep Image Matting [1]



Why trimap is important for alpha matting

e Separate trimap generation stage and fine matting stage

— Can fix main object detection result when it missed
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What is the difficulty of trimap generation?

e No GT trimap data
e difficult to define GT trimap

* | ess public alpha matting dataset
e Adobe Image Matting!'l: 493 unique training image
e Distinctions-646l2l: 646 unique training image

e Semantic Human Mattingl3l(not public): 35,513 unique images



Existing trimap generation method

Semantic Human Matting!(3]

* End-to-end alpha matting training

— output trimap as intermediate representation (Fusion module)

e Using huge dataset

— 35,513 unigue human images (not public)
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Images from: Semantic Human Matting [3]



Our method

e Multimodal training by pseudo trimap and saliency map dataset
* [ncrease number of GT trimap image
e Additional end-to-end training by GT alpha matte dataset

* Fine-tune trimaps by alpha matting loss



STEP1 - Train main object detection stage

* Train saliency map and trimap multimodality
e |Introduce PFAN!4! network (SoTA saliency map prediction network)

e DUTS image dataset®!: (Train: 10,553, Test: 1,000)
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STEP2 - Fine-tune with end-to-end training

e Combine pre-trainea

fine matting stage

e Additional training by
Distinctions-646!2!

e Adopt the thickness of
unknown part to the

object
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Result

* The main object in the image is accurately detected

e Unknown parts become thicker at the complex boundaries

original photos trimaps




Quantitative comparison: network structure

Method SAD  MSE (x1072) Gradient (x10°) Connectivity
ECSSD

VGG16 + PSPNet 11.499 6.098 2.2477 1.236
VGG16 + proposed  9.219  4.865 1.812 1.127
Resnetl8 + PSPNet 10.814 5.730 2.131 1.231
Resnetl8 + proposed 8.069  4.075 1.478 1.161
Densenet + PSPNet  8.933  4.706 1.721 1.021
Densenet + proposed 7.26S  3.596 1.287 1.021
Distinction-646

VGG16 + PSPNet 14.552 6.550 2.304 1.838
VGG16 + proposed  13.228  6.038 2.103 1.716
Resnetl8 + PSPNet 14918 6.875 2.419 1.815
Resnetl8 + proposed 14.215 6.776 2.439 1.480
Densenet + PSPNet  21.106 10.789 4.013 1.663
Densenet + proposed 13.619 6.421 2.267 1.509

Table 1. Performance comparison.



Quantitative comparison: with- and without-each components

Method SAD  MSE (x1072) Gradient (x103) Connectivity

no SA 16.618 8.062 2.903 1.726
no CA 15.904 7.587 2.7707 1.877
no Lg 14.837 7.037 2.483 1.692
no L, 16.332 8.154 3.024 1.364
proposed 14.215 6.776 2.439 1.480

Table 2. Performance with and without each component. Lg
and L, are saliency map loss and alpha matte loss.



Qualitative comparision: with- and without-step2 training
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