A Fast and Efficient Super-Resolution Network using Hierarchical Dense Residual Learning

ICIP 2021 Anchorage, Alaska, USA

1. Introduction

Goal: To restore high-resolution (HR) image from low-resolution (LR) image with detailed textures and important information

Low-resolution image

High-resolution image

According to the number of input LR images, superresolution can be classified into:

- ✓ Single image super-resolution (Our interest)
- ✓ Multiple image super-resolution

2. Motivation

Problem: The previous works do not pay enough attention to the key role of multi-level residual and multi-level dense connections

Method	First-Level	Second-Level
	Connection	Connection
EDSR, RCAN, etc.	Residual	Residual
RDN, MGAN, etc.	Dense	Residual
CARN, CSFM, etc.	Residual	Dense
SRDenseNet, MemNet, etc.	Dense	Dense
HDRN (Ours)	Dense Residual	Dense Residual

approach: We propose a hierarchical dense residual network (HDRN) by effectively combining the hierarchical dense residual learning into a single CNN model

Vinh Van Duong, Thuc Nguyen Huu, Jonghoon Yim, and Byeungwoo Jeon Dept. of Electrical and Computer Engineering, Sungkyunkwan University, Korea

3. Proposed Network Architecture

[5] Z. Yang, et al., "Gated channel transformation for visual recognition," in CVPR 2020.

Digital Media Lab, Sungkyunkwan University, Korea