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Motivation

Transform Learning:
Learn T to sparsify training signals
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Why do we not learn TTV?

Conclusion

•The smoothness in T̂ results from splitting the objective
function and introducing λ.

•The smoothness increases with λ.

•By construction, the learned transform will have a lower
training objective value.

•However, TTV denoises better than the smoothed T̂.

•The task-based nature of bilevel learning can reduce the
smoothing effect.

•However, the bilevel learning method requires a differ-
entiable objective function, yielding noisier images than
TTV with a 0-norm regularizer.

•The bilevel results can likely be improved with a non-
convex regularizer.
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• Image denoising: x̂ = argminx
1
2 ‖x− y‖2

2 + βR(x)

• Goal: Learn R(x) from training data to denoise images

Training signals
• Noiseless PWC 1D signals

– 1,024 for transform learning: patches of these are sl
– 128 for bilevel filter learning: each signal is sj

• At most one jump in any given length-4 patch
• T as the set of single, length-4 filters with unit norm

Training results
• When R(x) = ‖Tx‖0, the best transform/filter is:

TTV = hTV =
1√
2

[
0 1 -1 0

]
• Compare learned Transforms and filters to TTV using the angle

between vectors: cos−1 (|〈z1, z2〉|/ ‖z1‖ ‖z2‖).

Transform Learning [1]

T̂ = argmin
T∈T

min
zl∈CK

L∑
l=1

1
2 ‖Tsl − zl‖2

2 + λ ‖zl‖0

̂̃T = argmin
T̃∈T̃

min
zl∈CD

L∑
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2‖T̃sl − zl‖2

2 + λ ‖Wzl‖0

“Dummy rows” Orthonormal rows

Tuning parameter

W = [IK 0]

Block coordinate minimization

Z = T̃(n−1)S
Z1:K,: = prox.(Z1:K,:)

and ̂̃T(n)
= argmin

T̃∈T

‖T̃S− Z(n)‖2
F︸ ︷︷ ︸

Procrustes problem [2]

Bilevel Method: Convolutional Filters [3]–[5]

γ̂ = argmin
γ

J∑
j=1

1
2‖x̂j(γ)− sj‖2

2 where

x̂j(γ) = argmin
x
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R(x ;γ)︷ ︸︸ ︷
K∑

k=1

eβk1′ψ.(hk ~ x)

Unrolled algorithm: x(i+1)
j = x(i)j −

1
L

x(i)j − yj +
∑

k

eβk(h̃k ~ ψ.(hk ~ x(i)j ))


ψ(z) =

√
z2 + 0.12

yj = sj + n

Upper-level loss

Lower-level task

γ = [β , h]

• Unroll enough lower-level gradient descent itera-
tions to reach convergence [6], [7]

• Use Adam [8] on unrolled algorithm to learn γ

• Test 100 random initializations for h
• All learned filters within 1.44 to 5.16 degrees of

hTV
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Testing signals
• s1: length-1000 signal with 50 jumps (a slight generalization of

our training data),
• s2: collection of 128 signals created in the same way as the train-

ing data but with a different random seed.
• Noisy data: the true signal plus mean zero Gaussian noise with

a standard deviation of 0.1

Testing results
• Report the average root mean square error (RMSE):

–
√

1
N ‖x̂− s‖2

– N is the signal length

x̂(y) = argmin
x

1
2
‖x− y‖2

2 + β
∑

l
min

zl
‖TPlx− zl‖2

2 + α ‖zl‖0︸ ︷︷ ︸
R(x)

Grid search

• The (smoothed) learned transform denoises worse than
TTV.

• One could do a grid search over λ, but that would not be
practical for many real-world datasets.

TTV
ˆT(λ=0.23)

s1 ∈ R1000 4.0 6.2
s2 ∈ R32 5.2 8.2

x̂(γ) = argmin
x

1
2 ‖x− y‖2

2 + eβ̂11′ψ.(ĥ1 ~ x)︸ ︷︷ ︸
R(x ;γ)

Results for best and worse RMSE
across random initializations.

hTV ĥbest ĥworst
s1 ∈ R1000 4.4 5.1 6.3
s2 ∈ R32 5.4 5.5 6.6

• No separate grid search needed.
• Learned filters denoise better than T̂(λ = 0.23)
• Learned filters are especially good for s2, which mimics

the training data
• TTV with the zero-norm outperforms learned filters with

corner rounded 1-norm
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