

- Image denoising: $\mathbf{\hat{x}} = \operatorname{argmin}_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} \mathbf{y}\|_{2}^{2} + \beta R(\mathbf{x})$
- Goal: Learn $R(\mathbf{x})$ from training data to denoise images

Training signals

- Noiseless PWC 1D signals
- 1,024 for transform learning: patches of these are s_l
- 128 for bilevel filter learning: each signal is s_i
- At most one jump in any given length-4 patch
- \mathbb{T} as the set of single, length-4 filters with unit norm

Training results

Training

i Ng

Denoisi

• When $R(\mathbf{x}) = \|\mathbf{T}\mathbf{x}\|_0$, the best transform/filter is:

$$\mathbf{T}_{\rm TV} = \mathbf{h}_{\rm TV} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \ 1 \ -1 \ 0 \end{bmatrix}$$

• Compare learned Transforms and filters to T_{TV} using the angle between vectors: $\cos^{-1}(|\langle \mathbf{z}_1, \mathbf{z}_2 \rangle| / ||\mathbf{z}_1|| ||\mathbf{z}_2||).$

Testing signals

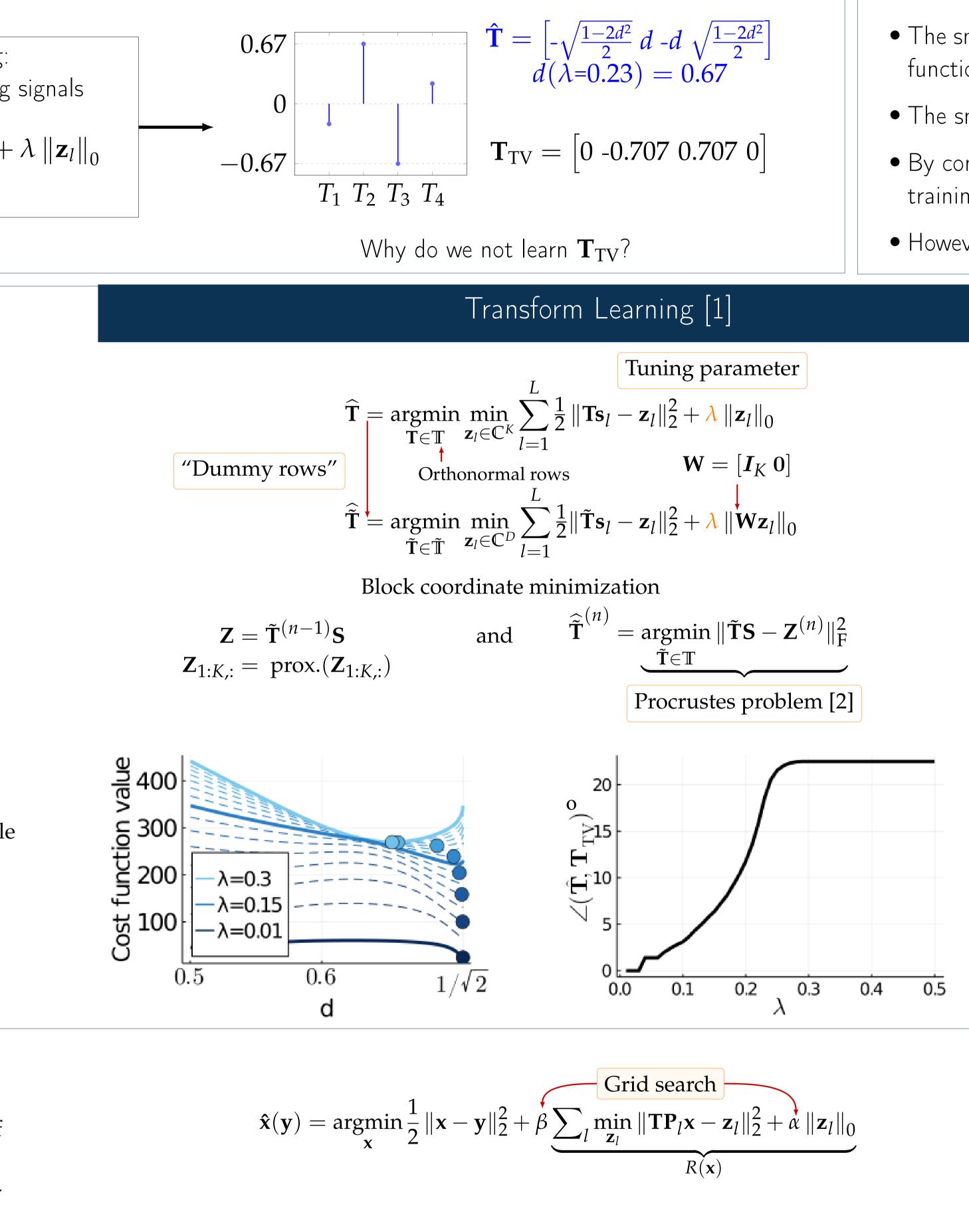
- s_1 : length-1000 signal with 50 jumps (a slight generalization of our training data),
- **s**₂: collection of 128 signals created in the same way as the training data but with a different random seed.
- Noisy data: the true signal plus mean zero Gaussian noise with a standard deviation of 0.1

Testing results

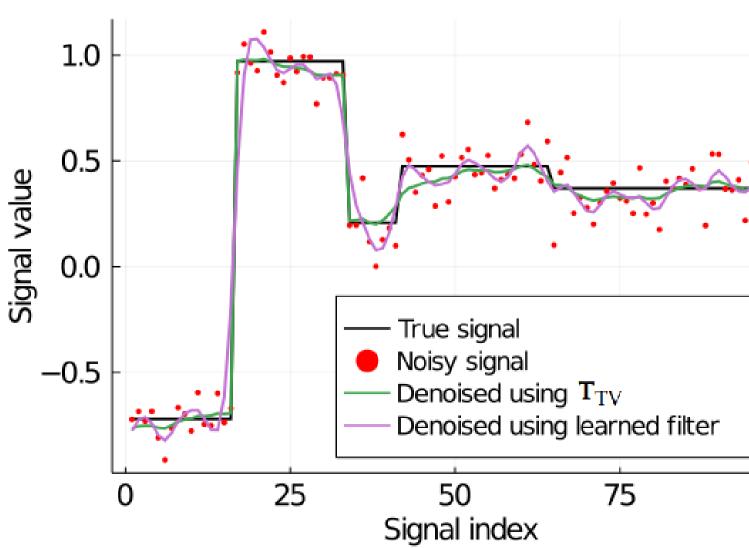
- Report the average root mean square error (RMSE):
- $-\sqrt{rac{1}{N}}\|\mathbf{\hat{x}}-\mathbf{s}\|^2$
- -N is the signal length

Caroline Crockett and Jeffrey A. Fessler Department of EECS, University of Michigan, {cecroc fessler}@umich.edu

Motivation



- The (smoothed) learned transform denoises worse than \mathbf{T}_{TV} .
- One could do a grid search over λ , but that would not be practical for many real-world datasets.



Conclusion

- The smoothness in $\hat{\mathbf{T}}$ results from splitting the objective function and introducing λ .
- The smoothness increases with λ .
- By construction, the learned transform will have a lower training objective value.

Upper-level

• However, \mathbf{T}_{TV} denoises better than the smoothed $\hat{\mathbf{T}}$.

Bilevel Method: Convolutional Filters [3]–[5]

$$\hat{\gamma} = \underset{\gamma}{\operatorname{argmin}} \sum_{j=1}^{J} \frac{1}{2} \| \hat{\gamma} - \underset{j=1}{\sum} \frac{1}{2} \| \hat{\gamma} - \underset{\gamma}{\sum} \| \hat{\gamma} - \underset{\gamma}{\sum} \frac{1}{2} \| \hat{\gamma}$$

Lower-level task
$$\hat{\mathbf{x}}_j(\gamma) = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{x} - \mathbf{x}_j(\gamma) \| = \underset{\mathbf{x}}{\operatorname{$$

Unrolled algorithm:
$$\mathbf{x}_{j}^{(i+1)} = \mathbf{x}_{j}^{(i)} - \frac{1}{L}$$

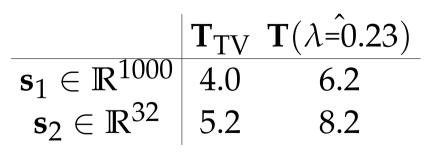
- Unroll enough lower-level gradient descent iterations to reach convergence [6], [7]
- Use Adam [8] on unrolled algorithm to learn γ
- Test 100 random initializations for **h**
- All learned filters within 1.44 to 5.16 degrees of \mathbf{h}_{TV}

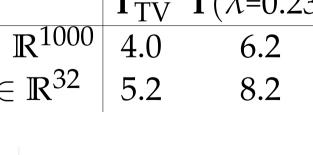
Results for best and worse RMSE across random initializations.

	\mathbf{h}_{TV}	$\hat{\mathbf{h}}_{best}$	$\hat{\mathbf{h}}_{\mathrm{worst}}$
$\mathbf{s}_1 \in \mathbb{R}^{1000}$	4.4	5.1	6.3
$\mathbf{s}_2 \in \mathbb{R}^{32}$	5.4	5.5	6.6

- [1] S. Ravishankar and Y. Bresler, "Learning Sparsifying Transforms," *IEEE Trans. on Signal Process.*, vol. 61, no. 5, pp. 1072–1086, 2013. DOI: 10.1109/TSP.2012.2226449.
- [2] P. H. Schönemann, "A generalized solution of the orthogonal procrustes problem," Psychometrika, vol. 31, no. 1, pp. 1–10, 1966. DOI: 10.1007/BF02289451
- [3] M. T. McCann and S. Ravishankar, Supervised Learning of Sparsity-Promoting Regularizers for Denoising, 2020. arXiv: 2006.05521. [4] G. Peyré and J. M. Fadili, Learning Analysis Sparsity Priors, Singapour, Singapore, 2011. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00542016/
- document.
- [5] Y. Chen, T. Pock, and H. Bischof, "Learning l₁-based analysis and synthesis sparsity priors using bi-level optimization," in Neural Information Processing Systems *Confercence* (*NIPS*), 2014. arXiv: 1401.4105 [cs].
- [6] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil, "Forward and Reverse Gradient-Based Hyperparameter Optimization," in Proceedings of the 34th ICML, Sydney, Australia, 2017, pp. 1165–1173. [Online]. Available: http://proceedings.mlr.press/v70/franceschi17a.html.
- [7] H. Antil, Z. Di, and R. Khatri, "Bilevel Optimization, Deep Learning and Fractional Laplacian Regularization with Applications in Tomography," Inverse Problems, Mar. 18, 2020, ISSN: 0266-5611, 1361-6420. DOI: 10.1088/1361-6420/ab80d7.

This work was supported in part by NIH grants R01 EB023618 and NSF grant IIS 1838179.

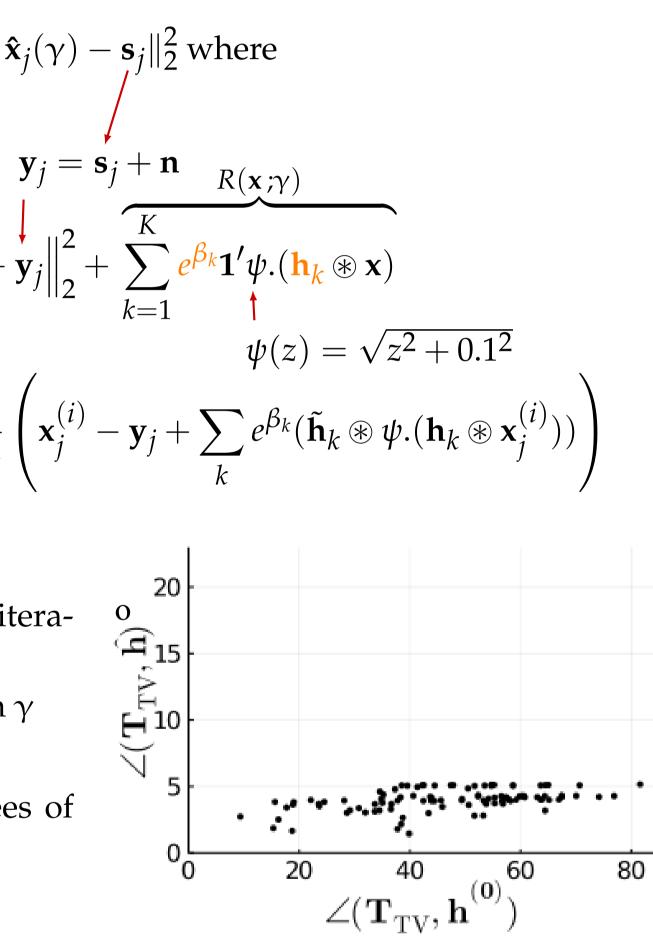




• The task-based nature of bilevel learning can reduce the smoothing effect.

• However, the bilevel learning method requires a differentiable objective function, yielding noisier images than $\mathbf{T}_{\mathbf{TV}}$ with a 0-norm regularizer.

• The bilevel results can likely be improved with a nonconvex regularizer.



$$\mathbf{y}\|_{2}^{2} + \underbrace{e^{\hat{\beta}_{1}}\mathbf{1}'\psi.(\hat{\mathbf{h}}_{1} \circledast \mathbf{x})}_{R(\mathbf{x};\gamma)}$$

• No separate grid search needed.

• Learned filters denoise better than $\hat{\mathbf{T}}(\lambda = 0.23)$

• Learned filters are especially good for s_2 , which mimics the training data

• **T**_{TV} with the zero-norm outperforms learned filters with corner rounded 1-norm

^[8] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," in 3rd International Conference on Learning Representations, ICLR 2015, 2015. arXiv: 1412.6980.