

INTRODUCTION

- We introduce a new method for generating color
- Current methods either require some form of ac "paired" translation approach.
- We argue that segmentation information could colorization.
- We propose to leverage semantic image segmen loss function.

Our method;

- 1. can be integrated to any GAN model.
- 2. not limited to datasets that contain segmentation
- 3. can be trained for unpaired translation tasks.
- We show the effectiveness of our method on four indoor, outdoor, and children book illustration user study analysis.

MODE

Our model consists of a baseline GAN, a panoptic discriminators (D_M and D_B).

We designed three variants of our model;

- 1. Multi Class: The first variant utilizes the full segret foreground and background classes – a total of
- 2. Binary: As a higher level of abstraction, grouping may yield sufficient information.
- 3. Both: Finally, our third variant is the union of the

ADVERSARIAL SEGMENTATION LOSS FOR SKETCH COLORIZATION

Samet Hicsonmez¹ Nermin Samet² Emre Akbas² Pinar Duygulu¹ ¹Computer Engineering, Hacettepe University, Ankara, Turkey ² Computer Engineering, Middle East Technical University, Ankara, Turkey

or images from sketches or edge maps.	We						
dditional user-guidance or are limited to the	Bed Sche						
d provide valuable guidance for sketch							
ntation to create an additional adversarial	• 0 <u>h</u>						
n labels.	• A • S						
r different datasets spanning scene level n images using qualitative, quantitative and	• L						
	Datas Bedro						
segmentation network (Seg) and two	Illusti Eleph Sheep						
mentation map of an image where all 135 classes– are considered.							
g objects only as background and foreground							
e above two.							
Fake Segmentation	J.						

The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

DATASETS

evaluated our models on four challenging datasets. **Iroom** images from the Ade20k indoor dataset. Children's book illustrations by Axel effler. Elephant and Sheep images curated by us from the COCO dataset. ge images are extracted using the HED [18] method. Our code, pretrained models and the scripts are available in https://github.com/giddyyupp/AdvSegLoss

EXPERIMENTS

Adversarial Segmentation Loss affected the results of paired and unpaired cases differently. Segmentation guidance closed the gap between unpaired and paired training results. imitation: Elephant and sheep results lack realism, even using paired training scheme.

et	Unpaired			Paired					
	CycleGAN	+AdvSegLoss (Multi-class)	+AdvSegLoss (Binary)	+AdvSegLoss (Both)	AutoPainter	Pix2Pix	+AdvSegLoss (Multi-class)	+AdvSegLoss (Binary)	+AdvSegLoss (Both)
om	113.1	111.7	87.1	93.2	206.8	100.5	100.0	95.1	110.1
ation	213.6	206.9	204.8	189.4	272.0	180.0	176.9	178.0	175.7
ant	126.4	103.9	91.9	116.9	155.1	83.5	85.8	78.8	82.8
	209.3	207.2	236.1	196.8	233.1	157.0	159.9	162.0	150.5

GT

ACKNOWLEDGEMENTS