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Deep Learning
SOTA in many different tasks

Requirement: “tons” of training data

Reality: not always the case!

= Access to limited amount of training data
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A real world example

Human-robot collaboration on daily tasks

= |nfer the “world” from a few observations

Use-case: Manipulation and handovers of objects

= E.g., containers, drinking cups/glasses

Important: estimate the container weight
= |nfer dimensions/volume

= |nfer the amount of content within the
container (filling level)

=, CORSIVIEE

j Collaborative object recognition,
shared manipulation and leaming

CORSMAL: Collaborative Object Recognition,
Shared Manipulation and Learning
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Filling level estimation: challenges

This ostensibly simple scenario: very challenging in fact!

= Constrained to vision madality: RGB data (no depth)

= Differences in shape = Differencies in transparency = Occlusions by the hand

g - =

= More: material, type of content, illumination, background ...




Filling level estimation: prior work

Observe the action of pouring content in the container

cup handle

RGB-D
= Track the level during pouring M

refracted bottom / liquid height

RGB-D + Thermal
= |dentify pixels of “heated” liquid ©!

(b) Thermal

[1] C. Do et al. “A probabilistic approach to liquid level detection in cups using RGB-D camera”, IEEE IROS 2016
2] C. Do et al. “Accurate pouring with an autonomous robot using an RGB-D camera”, AISC 2018
[3] C. Schenck et al. “Visual closed-loop control for pouring liquids”, IEEE ICRA 2017



Filling level estimation: prior work
Single RGB (still) images

= Most challenging case (for vision) M N pr— 5 jm

= No depth - temporal - or material information
= Plus: the “few” data problem /@

vqume content
E> class class

Best solution (classification): Transfer learning a -
= |ImageNet + fine-tuning ResNet

Yet... the performance is marginally better than random chance!

What if Transfer Learning could be improved?

[1] R. Mottaghi et al. “See the glass half-full: Reasoning about liquid containers, their volume and content”, IEEE ICCV 2017



Our work

Adversarial Training + Transfer Learning

adversarial example

source

domain
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Preliminaries
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Adversarial Training

How to make the network robust = Adversarial Training (AT)

Instead of training with natural examples —> [rain with adversarial examples

Castle Castle

Train Train




Why adversarial training?

AT improves transfer learning! ™
= AT on the source domain, then fine-tune on the target

= Better results than standard transfer learning
= Evaluated and holds for many computer vision tasks!

[1] H. Salman et al. “Do adversarially robust ImageNet models transfer better?”, NeurlPS 2020



Why adversarial training?

AT improves transfer learning! ™
= AT on the source domain, then fine-tune on the target

= Better results than standard transfer learning
= Evaluated and holds for many computer vision tasks!

adversarial example

Question: would it hold for filling level estimation? i

vV v

. _— 44
u - A — L )
Quite novel task = s Mf 7/

= \What paramteres should be used? o, <ousile
= What if we also perform AT on the target domain? dah——
- — Py L)
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[1] H. Salman et al. “Do adversarially robust ImageNet models transfer better?”, NeurlPS 2020

Adversarial training

Fine-tuning
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The dataset
C-CCM: Image crops from the CORSMAL Containers Manipulation Dataset @

= Large variability (transparency, shape, etc)

8 objects: 4 cups and 4 drinking glasses
In total: 10,216 RGB images

Filling level: 0%, 50%, 90%, “unknown”
Filling type: water, pasta, rice

[1] A. Xompero et al. “CORSMAL Containers Manipulation Dataset (1.0)", https:/doi.org/10.17636/101CORSMAL1



Dataset configurations
Config. 1 (S,)

Train Test

= Champagne flute in test set

All stems in test set

Config. 3 (S,)
Train Test

All stems in train set
Color & opaqgue in test set



Experimental Results



Sensitivity analysis

Freezing layers during standard fine-tuning
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Sensitivity analysis

Freezing layers during standard fine-tuning

Accuracy (%)
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= Fixing the 1st layer results in

the highest test accuracy
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Accuracy (%)

Comparisons

== ST, == AT, == ST—FT, == STAFT, == AT—FT, == AT—AFT

So
i

100
80 |-
60 |-
40

= AT—FT : best results most of the times
- ST—FT : ImageNet features reduce biases

- AT—FT : ImageNet features are aslo filtered by AT
and improve generalization even further

= = = AT on the target domain is not really helpful
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Beer cup: same shape as small transparent cup of the train set,

but just bigger

Cocktail glass: many similarities with wine glass of the train set,

but still not exact same shape




Comparisons

== ST, == AT, == ST—FT, == STAFT, == AT—FT, == AT—AFT

100

(9) AoeIndoy

: Cannot cope with shape above stem

= ST, == AT,

: Improves by 1.6x the performance

== AT—FT.
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Comparisons
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= ST, = AT, : Good results - shape above stem is “sufficiently” regular

— AT—FT  : Much better than standard transfer learning
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= ST, = AT, : Almost 0%! In fact, 99% of predictions are “90% full”,
Possibly: the opaque red cup resembles a “transparent cup” + “90% with rice/pasta” of the train set

= AT—FT. : Superior performance - generally all transfer learning strategies improve



Comparisons

== ST, == AT, == ST—FT, == STAFT, == AT—FT, == AT—AFT

So

St

100

(9) AoeIndoy

Almost every method performs similarly

: Superior performance, almost +10% accuracy

== AT—FT



Comparisons

== ST, == AT, == ST—FT, == STAFT, == AT—FT, == AT—AFT

So

St

100

(9) AoeIndoy

All methods perform very well: same shape as the small
transparent cup of the train set, but just bigger



Conclusions

Estimate the content level within a container

= (Classification task

Release a new dataset: Cropped CORSMAL Containers Manipulation (C-CCM)
= Variability in shape, content, transparencies, occlusions

Training strategies
= Explored different training strategies
= With standard training: overfitting to specific features (ie, shape)

AT (source) + Fine-tuning
= |Improves standard transfer learning
= Superior performance & eliminates biases
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